OPTICAL ABSORPTION ENHANCEMENT IN SOLAR CELLS VIA 3D PHOTONIC CRYSTAL STRUCTURES

Light concentrating structures with three-dimensional photonic crystals (3D PhCs) for solar cell applications are investigated via simulation. The 3D opal PhCs are suggested as an intermediate layer in the concentrator system for solar cells. It is found that the light absorption is signiflcantly enhanced due to the adding of difiractive efiects of PhCs to the concentrator. Three types of PhCs are considered in four scenarios to verify the absorption enhancement by such a light concentrating structure. Our calculations show that the face-centered cubic PhC can create an absorbing e-ciency superior to the others under a specifled lattice orientation pointing to the sun, which results in an enhancement factor of 1.56 in absorption for the 500{1100nm spectral range.

[1]  J. Manzanares-Martínez,et al.  Enlargement of Photonic Band Gap in Porous Silicon Dielectric Mirrors , 2010 .

[2]  Benedikt Bläsi,et al.  Spectrally-Selective Photonic Structures for PV Applications , 2010 .

[3]  Stefan Zukotynski,et al.  High-efficiency photonic crystal solar cell architecture. , 2009, Optics express.

[4]  Kenji Yamamoto,et al.  Thin-film crystalline silicon solar cells , 2002 .

[5]  Carsten Rockstuhl,et al.  Intermediate reflectors for enhanced top cell performance in photovoltaic thin-film tandem cells. , 2009, Optics express.

[6]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[7]  W. Vervisch,et al.  Slow Bloch modes for enhancing the absorption of light in thin films for photovoltaic cells , 2008 .

[8]  J. Dowling,et al.  Improving solar cell efficiency using photonic band-gap materials , 2007 .

[9]  Xiangbo Yang,et al.  Larger Absolute Band Gaps in Two-Dimensional Photonic Crystals Fabricated by a Three-Order-Effect Method , 2010 .

[10]  Jef Poortmans,et al.  Thin Film Solar Cells: Fabrication, Characterization and Applications , 2006 .

[11]  James G. Mutitu,et al.  Thin film solar cell design based on photonic crystal and diffractive grating structures. , 2008, Optics express.

[12]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[13]  Jean-Michel Lourtioz,et al.  Photonic Crystals : Towards Nanoscale Photonic Devices , 2005 .

[14]  F. Dimroth,et al.  Increasing the efficiency of fluorescent concentrator systems , 2009 .

[15]  Shrestha Basu Mallick,et al.  Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells , 2010, Photonics Europe.

[16]  Carsten Rockstuhl,et al.  3D photonic crystal intermediate reflector for micromorph thin‐film tandem solar cell , 2008 .

[17]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[18]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[19]  Peter Bermel,et al.  Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector , 2008 .

[20]  A. Chutinan,et al.  Light trapping and absorption optimization in certain thin-film photonic crystal architectures , 2008 .

[21]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[22]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[23]  F. Lederer,et al.  Employing dielectric diffractive structures in solar cells – a numerical study , 2008 .