Lennard‐Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations

Lennard‐Jones (LJ) parameters are derived for classical nonpolarizable force fields for carbon nanotubes (CNTs) and for CNT–water interaction from van der Waals (vdW) enhanced density functional calculations. The new LJ parameters for carbon–carbon interactions are of the same order as those previously used in the literature but differ significantly for CNT–water interactions. This may partially originate from the fact that in addition to pure vdW interactions the polarization and other quantum mechanics effects are embedded into the LJ‐potential. © 2012 Wiley Periodicals, Inc. J Comput Chem, 2012

[1]  Contact geometry and conductance of crossed nanotube junctions under pressure. , 2009, Nano letters.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Emilio Artacho,et al.  LINEAR-SCALING AB-INITIO CALCULATIONS FOR LARGE AND COMPLEX SYSTEMS , 1999 .

[4]  Marco Häser,et al.  Auxiliary basis sets to approximate Coulomb potentials , 1995 .

[5]  F. Du,et al.  Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction , 2009, Science.

[6]  Benedict,et al.  Static polarizabilities of single-wall carbon nanotubes. , 1995, Physical review. B, Condensed matter.

[7]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[8]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[9]  A. Rubio,et al.  AB INITIO STRUCTURAL, ELASTIC, AND VIBRATIONAL PROPERTIES OF CARBON NANOTUBES , 1999 .

[10]  Boris Kozinsky,et al.  Static dielectric properties of carbon nanotubes from first principles. , 2006, Physical review letters.

[11]  A. Tkatchenko,et al.  Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. , 2009, Physical review letters.

[12]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[13]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[14]  R. Nieminen,et al.  Linear-scaling self-consistent implementation of the van der Waals density functional , 2009 .

[15]  Hiromichi Kataura,et al.  Water-filled single-wall carbon nanotubes as molecular nanovalves. , 2007, Nature materials.

[16]  N. Aluru,et al.  Pumping of confined water in carbon nanotubes by rotation-translation coupling. , 2008, Physical review letters.

[17]  R. Friesner,et al.  Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides† , 2001 .

[18]  Petros Koumoutsakos,et al.  On the Water−Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes , 2003 .

[19]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[20]  M. Burghard,et al.  Electronic and vibrational properties of chemically modified single-wall carbon nanotubes , 2005 .

[21]  Prashant V. Kamat,et al.  Harvesting photons with carbon nanotubes , 2006 .

[22]  Jorge M. Seminario,et al.  Calculation of intramolecular force fields from second‐derivative tensors , 1996 .

[23]  Chris Oostenbrink,et al.  A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6 , 2004, J. Comput. Chem..

[24]  Peter J. F. Harris,et al.  Carbon Nanotube Science: Frontmatter , 2009 .

[25]  D. Bowler,et al.  Van der Waals density functionals applied to solids , 2011, 1102.1358.

[26]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[27]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[28]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[29]  S. Luyckx,et al.  Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). , 2010, Physical review letters.

[30]  Pär Söderhjelm,et al.  Conformational dependence of charges in protein simulations , 2009, J. Comput. Chem..

[31]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[32]  K. Gubbins,et al.  Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation. , 2005, The Journal of chemical physics.

[33]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[34]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[35]  L. Siebbeles,et al.  Opto-Electronic Properties of Fluorene-Based Derivatives as Precursors for Light-Emitting Diodes , 2007 .

[36]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[37]  G. Hummer,et al.  Water conduction through the hydrophobic channel of a carbon nanotube , 2001, Nature.

[38]  Per Hyldgaard,et al.  Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results , 2008, 0803.3623.

[39]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[40]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[41]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[42]  Rongzheng Wan,et al.  Water-mediated signal multiplication with Y-shaped carbon nanotubes , 2009, Proceedings of the National Academy of Sciences.

[43]  Kenichiro Koga,et al.  Formation of ordered ice nanotubes inside carbon nanotubes , 2001, Nature.

[44]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[46]  David Feller,et al.  Estimating the Strength of the Water/Single-Layer Graphite Interaction , 2000 .

[47]  J. Samios,et al.  Investigation of Silicon Model Nanotubes as Potential Candidate Nanomaterials for Efficient Hydrogen Storage : A Combined Ab Initio/Grand Canonical Monte Carlo Simulation Study , 2008 .

[48]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.