Global Optimization Toolbox for Maple

106 IEEE CONTROL SYSTEMS MAGAZINE » OCTOBER 2006 1066-033X/06/$20.00©2006IEEE Global optimization seeks to find the best solution to a constrained nonlinear optimization problem by performing a complete search over a set of feasible solutions. In contrast with local optimization, a complete search exhaustively checks the entire feasible region under a Lipschitz-continuity assumption with a known bound on the Lipschitz constant. Some online information on global optimization is available at [1]. As surveyed in [2], many mathematical and engineering problems require a complete search. An example is the 300year-old Kepler problem of finding the densest packing of equal spheres in three-dimensional Euclidean space, for which a computer-assisted proof is discussed in [3]. The proof involves reducing the problem to several thousand linear programs and using interval calculations to ensure rigorous handling of rounding errors for establishing the correctness of inequalities. Many other difficult problems, such as the traveling salesman and protein folding problems, are global optimization problems.

[1]  János D. Pintér,et al.  Global optimization in action , 1995 .

[2]  János D. Pintér,et al.  Global Optimization: Software, Test Problems, and Applications , 2002 .

[3]  Peter D. Richardson,et al.  Numerical Methods in Engineering and Science , 1987 .

[4]  Edward J. Beltrami,et al.  Mathematical Models in the Social and Biological Sciences , 1992 .

[5]  Panos M. Pardalos,et al.  Handbook of applied optimization , 2002 .

[6]  Zelda B. Zabinsky,et al.  Stochastic Adaptive Search for Global Optimization , 2003 .

[7]  János D. Pintér,et al.  A Global Optimization Approach to Laser Design , 2003 .

[8]  Klaus Schittkowski,et al.  Numerical Data Fitting in Dynamical Systems , 2002 .

[9]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[10]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[11]  M. Safonov,et al.  Exact calculation of the multiloop stability margin , 1988 .

[12]  Jürgen Ackermann,et al.  Robust gamma-stability analysis in a plant parameter space , 1991, Autom..

[13]  J. Lasserre,et al.  Solving nonconvex optimization problems , 2004, IEEE Control Systems.

[14]  I. Grossmann Global Optimization in Engineering Design , 2010 .

[15]  Rutherford Aris,et al.  Mathematical modeling : a chemical engineer's perspective , 1999 .

[16]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[17]  Panos Y. Papalambros,et al.  Principles of Optimal Design: Author Index , 2000 .

[18]  János D. Pintér,et al.  An Optimization-Based Approach to the Multiple Static Delivery Technique in Radiation Therapy , 2003, Ann. Oper. Res..

[19]  Zelda B. Zabinsky,et al.  Comparative Assessment of Algorithms and Software for Global Optimization , 2005, J. Glob. Optim..

[20]  T. Hales The Kepler conjecture , 1998, math/9811078.

[21]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[22]  János D. Pintér,et al.  Global Optimization Toolbox for Maple: an introduction with illustrative applications , 2006, Optim. Methods Softw..

[23]  Stephen P. Boyd,et al.  Global Optimization in Control System Analysis and Design , 1992 .

[24]  M. Overton,et al.  Maximizing the Closed Loop Asymptotic Decay Rate for the Two-Mass-Spring Control Problem , 2006, math/0603681.