Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML.

[1]  F. Janku Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. , 2017, Cancer treatment reviews.

[2]  A. Wei,et al.  The mTOR inhibitor everolimus in combination with azacitidine in patients with relapsed/refractory acute myeloid leukemia: a phase Ib/II study. , 2017, Oncotarget.

[3]  C. Bloomfield,et al.  Midostaurin plus Chemotherapy for Acute Myeloid Leukemia with a FLT3 Mutation , 2017, The New England journal of medicine.

[4]  R. Gale,et al.  Gemtuzumab ozogamicin in acute myeloid leukemia , 2017, Leukemia.

[5]  Joydeep Ghosh,et al.  Role of mTORC1-S6K1 signaling pathway in regulation of hematopoietic stem cell and acute myeloid leukemia. , 2017, Experimental hematology.

[6]  I. Flinn,et al.  Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. , 2017, Blood.

[7]  N. Hay,et al.  Akt as a target for cancer therapy: more is not always better (lessons from studies in mice) , 2017, British Journal of Cancer.

[8]  Yonghuai Feng,et al.  mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival. , 2017, Biochemical and biophysical research communications.

[9]  Ø. Bruserud,et al.  The Complexity of Targeting PI3K-Akt-mTOR Signalling in Human Acute Myeloid Leukaemia: The Importance of Leukemic Cell Heterogeneity, Neighbouring Mesenchymal Stem Cells and Immunocompetent Cells , 2016, Molecules.

[10]  F. Ravandi,et al.  Acute Myeloid Leukemia: Past, Present, and Prospects for the Future. , 2016, Clinical lymphoma, myeloma & leukemia.

[11]  D. Sabatini,et al.  Mechanism of arginine sensing by CASTOR1 upstream of mTORC1 , 2016, Nature.

[12]  K. Coombes,et al.  MLN0128, a novel mTOR kinase inhibitor, disrupts survival signaling and triggers apoptosis in AML and AML stem/ progenitor cells , 2016, Oncotarget.

[13]  S. Grant,et al.  Update on rational targeted therapy in AML. , 2016, Blood reviews.

[14]  S. Grant,et al.  Co-administration of the mTORC1/TORC2 inhibitor INK128 and the Bcl-2/Bcl-xL antagonist ABT-737 kills human myeloid leukemia cells through Mcl-1 down-regulation and AKT inactivation , 2015, Haematologica.

[15]  Xiaojing Yang,et al.  The antileukemia roles of PP242 alone or in combination with daunorubicin in acute leukemia , 2015, Anti-cancer drugs.

[16]  L. Platanias,et al.  Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia , 2015, Cancer biology & therapy.

[17]  T. Kurosu,et al.  FLT3-ITD confers resistance to the PI3K/Akt pathway inhibitors by protecting the mTOR/4EBP1/Mcl-1 pathway through STAT5 activation in acute myeloid leukemia , 2015, Oncotarget.

[18]  L. Platanias,et al.  Targeting novel signaling pathways for resistant acute myeloid leukemia. , 2015, Molecular Genetics and Metabolism.

[19]  S. Capitani,et al.  Targeting PI3K/AKT/mTOR network for treatment of leukemia , 2015, Cellular and Molecular Life Sciences.

[20]  J. Cortes,et al.  Phase 2 trial of CPX-351, a fixed 5:1 molar ratio of cytarabine/daunorubicin, vs cytarabine/daunorubicin in older adults with untreated AML. , 2014, Blood.

[21]  O. Frankfurt,et al.  Autophagy Is a Survival Mechanism of Acute Myelogenous Leukemia Precursors during Dual mTORC2/mTORC1 Targeting , 2014, Clinical Cancer Research.

[22]  S. Gygi,et al.  Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signaling to suppress tumorigenesis , 2013, Nature Cell Biology.

[23]  Yi Zheng,et al.  Mouse gene targeting reveals an essential role of mTOR in hematopoietic stem cell engraftment and hematopoiesis , 2013, Haematologica.

[24]  L. Platanias,et al.  The evolution of the TOR pathway and its role in cancer , 2013, Oncogene.

[25]  J. McCubrey,et al.  Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia , 2013, Expert opinion on therapeutic targets.

[26]  P. Reddanna,et al.  The Paradox of Akt-mTOR Interactions , 2013, Front. Oncol..

[27]  L. Platanias,et al.  Next generation of mammalian target of rapamycin inhibitors for the treatment of cancer , 2013, Expert opinion on investigational drugs.

[28]  K. Döhner,et al.  Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia , 2013, Molecular Cancer.

[29]  N. Pallet,et al.  Adverse events associated with mTOR inhibitors , 2013, Expert opinion on drug safety.

[30]  A. Schulze,et al.  Balancing glycolytic flux: the role of 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatases in cancer metabolism , 2013, Cancer & metabolism.

[31]  P. Chevallier,et al.  A phase Ib GOELAMS study of the mTOR inhibitor RAD001 in association with chemotherapy for AML patients in first relapse , 2013, Leukemia.

[32]  J. McCubrey,et al.  A combination of temsirolimus, an allosteric mTOR inhibitor, with clofarabine as a new therapeutic option for patients with acute myeloid leukemia , 2012, Oncotarget.

[33]  S. Armstrong,et al.  mTOR complex 1 plays critical roles in hematopoiesis and Pten-loss-evoked leukemogenesis. , 2012, Cell stem cell.

[34]  D. Rubinsztein,et al.  Autophagy modulation as a potential therapeutic target for diverse diseases , 2012, Nature Reviews Drug Discovery.

[35]  T. Soga,et al.  mTORC1 is essential for leukemia propagation but not stem cell self-renewal. , 2012, The Journal of clinical investigation.

[36]  J. Tamburini,et al.  The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia , 2012, Leukemia.

[37]  L. Platanias,et al.  An overview of the mTOR pathway as a target in cancer therapy , 2012, Expert opinion on therapeutic targets.

[38]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[39]  P. Smolewski,et al.  mTOR kinase inhibitors as a treatment strategy in hematological malignancies. , 2012, Future medicinal chemistry.

[40]  M. Vignetti,et al.  Temsirolimus, an mTOR inhibitor, in combination with lower‐dose clofarabine as salvage therapy for older patients with acute myeloid leukaemia: results of a phase II GIMEMA study (AML‐1107) , 2012, British Journal of Haematology.

[41]  M. Carroll,et al.  Single-Cell Pharmacodynamic Monitoring of S6 Ribosomal Protein Phosphorylation in AML Blasts during a Clinical Trial Combining the mTOR Inhibitor Sirolimus and Intensive Chemotherapy , 2011, Clinical Cancer Research.

[42]  E. Dazert,et al.  mTOR signaling in disease. , 2011, Current opinion in cell biology.

[43]  L. Platanias,et al.  Emerging roles for mammalian target of rapamycin inhibitors in the treatment of solid tumors and hematological malignancies , 2011, Current opinion in oncology.

[44]  Erin M. Coffee,et al.  The Dual PI3K/mTOR Inhibitor NVP-BEZ235 Induces Tumor Regression in a Genetically Engineered Mouse Model of PIK3CA Wild-Type Colorectal Cancer , 2011, PloS one.

[45]  B. Hennessy,et al.  Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. , 2011, The Journal of clinical investigation.

[46]  C. García-echeverría Blocking the mTOR pathway: a drug discovery perspective. , 2011, Biochemical Society transactions.

[47]  X. Zheng,et al.  Targeting the mTOR kinase domain: the second generation of mTOR inhibitors. , 2011, Drug discovery today.

[48]  A. Redig,et al.  Dual mTORC2/mTORC1 Targeting Results in Potent Suppressive Effects on Acute Myeloid Leukemia (AML) Progenitors , 2011, Clinical Cancer Research.

[49]  D. McDonald,et al.  Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors. , 2011, Cancer research.

[50]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[51]  K. Baggerly,et al.  Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. , 2010, Blood.

[52]  Jiang Li,et al.  mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells , 2010, Molecular Cancer.

[53]  J. Tabernero,et al.  Targeting the PI3K/Akt/mTOR Pathway – Beyond Rapalogs , 2010, Oncotarget.

[54]  J. Tamburini,et al.  Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia , 2010, Clinical Cancer Research.

[55]  J. Tamburini,et al.  Perspectives on inhibiting mTOR as a future treatment strategy for hematological malignancies , 2010, Leukemia.

[56]  L. Platanias,et al.  Critical roles for mTORC2- and rapamycin-insensitive mTORC1-complexes in growth and survival of BCR-ABL-expressing leukemic cells , 2010, Proceedings of the National Academy of Sciences of the United States of America.

[57]  N. Sonenberg,et al.  mTORC1-Mediated Cell Proliferation, But Not Cell Growth, Controlled by the 4E-BPs , 2010, Science.

[58]  J. McCubrey,et al.  The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients , 2010, Oncotarget.

[59]  W. Linehan,et al.  The genetic basis of kidney cancer: a metabolic disease , 2010, Nature Reviews Urology.

[60]  Patrick Mayeux,et al.  Role of the PI3K/AKT and mTOR signaling pathways in acute myeloid leukemia , 2010, Haematologica.

[61]  K. Shokat,et al.  Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP-eIF4E. , 2010, Cancer cell.

[62]  Michael G. Kharas,et al.  Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. , 2010, Blood.

[63]  Jing Chen,et al.  Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor , 2010, Nature Medicine.

[64]  R. Abraham,et al.  Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. , 2010, Cancer research.

[65]  J. Tamburini,et al.  Targeting translation in acute myeloid leukemia: A new paradigm for therapy? , 2009, Cell cycle.

[66]  Nadine Cybulski,et al.  TOR complex 2: a signaling pathway of its own. , 2009, Trends in biochemical sciences.

[67]  U. Jaeger,et al.  Evaluation of in vivo antineoplastic effects of rapamycin in patients with chemotherapy-refractory AML. , 2009, European journal of internal medicine.

[68]  R. Abraham,et al.  Targeting mTOR globally in cancer: Thinking beyond rapamycin , 2009, Cell cycle.

[69]  M. Carroll,et al.  A Phase I Study of the Mammalian Target of Rapamycin Inhibitor Sirolimus and MEC Chemotherapy in Relapsed and Refractory Acute Myelogenous Leukemia , 2009, Clinical Cancer Research.

[70]  P. Smolewski,et al.  Rapamycin, the mTOR kinase inhibitor, sensitizes acute myeloid leukemia cells, HL-60 cells, to the cytotoxic effect of arabinozide cytarabine , 2009, Anti-Cancer Drugs.

[71]  J. Tamburini,et al.  Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia. , 2009, Blood.

[72]  R. Abraham,et al.  Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. , 2009, Cancer Research.

[73]  M. Konopleva,et al.  Therapeutic targeting of microenvironmental interactions in leukemia: mechanisms and approaches. , 2009, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[74]  Q. Rao,et al.  Aberrant expression of TSC2 gene in the newly diagnosed acute leukemia. , 2009, Leukemia research.

[75]  A. Tee,et al.  Mammalian target of rapamycin complex 1: signalling inputs, substrates and feedback mechanisms. , 2009, Cellular signalling.

[76]  S. Derdak,et al.  Targeting of mTOR is associated with decreased growth and decreased VEGF expression in acute myeloid leukaemia cells , 2009, European journal of clinical investigation.

[77]  C. Chresta,et al.  Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR) , 2009, The Biochemical journal.

[78]  D. Guertin,et al.  The Pharmacology of mTOR Inhibition , 2009, Science Signaling.

[79]  R. Crazzolara,et al.  Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. , 2009, Blood.

[80]  D. Sabatini,et al.  mTOR and cancer: many loops in one pathway. , 2009, Current opinion in cell biology.

[81]  D. Sabatini,et al.  An ATP-competitive Mammalian Target of Rapamycin Inhibitor Reveals Rapamycin-resistant Functions of mTORC1* , 2009, Journal of Biological Chemistry.

[82]  B. Manning,et al.  A complex interplay between Akt, TSC2 and the two mTOR complexes. , 2009, Biochemical Society transactions.

[83]  Robbie Loewith,et al.  Active-Site Inhibitors of mTOR Target Rapamycin-Resistant Outputs of mTORC1 and mTORC2 , 2009, PLoS biology.

[84]  B. Manning,et al.  Common corruption of the mTOR signaling network in human tumors , 2008, Oncogene.

[85]  F. Giles,et al.  Deforolimus (AP23573) a novel mTOR inhibitor in clinical development , 2008, Expert opinion on investigational drugs.

[86]  Sang Gyun Kim,et al.  Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation , 2008, Proceedings of the National Academy of Sciences.

[87]  T. Franke,et al.  PI3K/Akt: getting it right matters , 2008, Oncogene.

[88]  F. Callera,et al.  Lack of antileukemic activity of rapamycin in elderly patients with acute myeloid leukemia evolving from a myelodysplastic syndrome. , 2008, Leukemia research.

[89]  Michael G. Kharas,et al.  Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. , 2008, Journal of Clinical Investigation.

[90]  Konstantinos J. Mavrakis,et al.  Tumorigenic activity and therapeutic inhibition of Rheb GTPase. , 2008, Genes & development.

[91]  K. Shokat,et al.  PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML , 2008, Leukemia.

[92]  D. Dias-Santagata,et al.  The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin-dependent degradation. , 2008, Molecular cell.

[93]  J. Dipersio,et al.  A Phase 2 Clinical Trial of Deforolimus (AP23573, MK-8669), a Novel Mammalian Target of Rapamycin Inhibitor, in Patients with Relapsed or Refractory Hematologic Malignancies , 2008, Clinical Cancer Research.

[94]  Stephen L. Abrams,et al.  Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia , 2008, Leukemia.

[95]  C. Récher,et al.  A critical role for Lyn in acute myeloid leukemia. , 2008, Blood.

[96]  J. LoPiccolo,et al.  Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. , 2008, Drug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy.

[97]  S. Horvath,et al.  Antitumor Activity of Rapamycin in a Phase I Trial for Patients with Recurrent PTEN-Deficient Glioblastoma , 2008, PLoS medicine.

[98]  H. Kantarjian,et al.  Progress in the treatment of acute myeloid leukemia , 2007, Cancer.

[99]  Robert T Abraham,et al.  Targeting the mTOR signaling network in cancer. , 2007, Trends in molecular medicine.

[100]  A. Tee,et al.  Hypoxia-inducible Factor 1α Is Regulated by the Mammalian Target of Rapamycin (mTOR) via an mTOR Signaling Motif* , 2007, Journal of Biological Chemistry.

[101]  A. Arcaro,et al.  Autocrine insulin-like growth factor-I signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway , 2007, Leukemia.

[102]  R. Abraham,et al.  The Mammalian Target of Rapamycin Signaling Pathway: Twists and Turns in the Road to Cancer Therapy , 2007, Clinical Cancer Research.

[103]  D. Sabatini,et al.  Rapamycin derivatives reduce mTORC2 signaling and inhibit AKT activation in AML. , 2007, Blood.

[104]  N. Hay,et al.  The two TORCs and Akt. , 2007, Developmental cell.

[105]  J. McCubrey,et al.  The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion , 2007, Leukemia.

[106]  J. McCubrey,et al.  Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts , 2007, Leukemia.

[107]  Timothy J. Griffin,et al.  Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40 , 2007, Nature Cell Biology.

[108]  L. Costa Aspects of mTOR biology and the use of mTOR inhibitors in non-Hodgkin's lymphoma. , 2007, Cancer treatment reviews.

[109]  G. Mills,et al.  Activation of integrin-linked kinase is a critical prosurvival pathway induced in leukemic cells by bone marrow-derived stromal cells. , 2007, Cancer research.

[110]  Michele Pagano,et al.  S6K1- and ßTRCP-Mediated Degradation of PDCD4 Promotes Protein Translation and Cell Growth , 2006, Science.

[111]  N. Sonenberg,et al.  mTOR, translation initiation and cancer , 2006, Oncogene.

[112]  M. Konopleva,et al.  Phase I/II Study of the Mammalian Target of Rapamycin Inhibitor Everolimus (RAD001) in Patients with Relapsed or Refractory Hematologic Malignancies , 2006, Clinical Cancer Research.

[113]  G. Kroemer,et al.  Current development of mTOR inhibitors as anticancer agents , 2006, Nature Reviews Drug Discovery.

[114]  P. Smolewski Recent developments in targeting the mammalian target of rapamycin (mTOR) kinase pathway , 2006, Anti-cancer drugs.

[115]  Gordon B Mills,et al.  mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. , 2006, Cancer research.

[116]  M. Carroll,et al.  mTOR regulates cell survival after etoposide treatment in primary AML cells. , 2005, Blood.

[117]  Howard L McLeod,et al.  PI3K/Akt/mTOR pathway as a target for cancer therapy , 2005, Anti-cancer drugs.

[118]  C. Récher,et al.  mTOR, a new therapeutic target in acute myeloid leukemia. , 2005, Cell cycle.

[119]  F. Khuri,et al.  Activation of Akt and eIF4E survival pathways by rapamycin-mediated mammalian target of rapamycin inhibition. , 2005, Cancer research.

[120]  G. Laurent,et al.  Antileukemic activity of rapamycin in acute myeloid leukemia. , 2005, Blood.

[121]  G. Ehninger,et al.  MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia , 2005, British journal of haematology.

[122]  J. Tavaré,et al.  Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles , 2004, Journal of Cell Science.

[123]  B. Manning Balancing Akt with S6K , 2004, The Journal of cell biology.

[124]  R. Loewith,et al.  Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive , 2004, Nature Cell Biology.

[125]  E. Rowinsky Targeting the molecular target of rapamycin (mTOR) , 2004, Current opinion in oncology.

[126]  T. Hunter,et al.  Inappropriate Activation of the TSC/Rheb/mTOR/S6K Cassette Induces IRS1/2 Depletion, Insulin Resistance, and Cell Survival Deficiencies , 2004, Current Biology.

[127]  N. Sonenberg,et al.  Upstream and downstream of mTOR. , 2004, Genes & development.

[128]  G. Gatta,et al.  Adult acute myeloid leukaemia. , 2004, Critical reviews in oncology/hematology.

[129]  M. Clemens,et al.  Targets and mechanisms for the regulation of translation in malignant transformation , 2004, Oncogene.

[130]  J. Graff,et al.  eIF-4E expression and its role in malignancies and metastases , 2004, Oncogene.

[131]  A. Kimchi,et al.  Autophagy as a cell death and tumor suppressor mechanism , 2004, Oncogene.

[132]  L. Cantley,et al.  Rheb fills a GAP between TSC and TOR. , 2003, Trends in biochemical sciences.

[133]  J. Radich,et al.  The role of FLT3 in haematopoietic malignancies , 2003, Nature Reviews Cancer.

[134]  J. Blenis,et al.  Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb , 2003, Current Biology.

[135]  M. Carroll,et al.  Survival of acute myeloid leukemia cells requires PI3 kinase activation. , 2003, Blood.

[136]  J. Griffin,et al.  The roles of FLT3 in hematopoiesis and leukemia. , 2002, Blood.

[137]  Ying Li,et al.  AKT/PKB Phosphorylation of p21Cip/WAF1 Enhances Protein Stability of p21Cip/WAF1 and Promotes Cell Survival* , 2002, The Journal of Biological Chemistry.

[138]  A. Zeiher,et al.  Glycogen Synthase Kinase-3 Couples AKT-dependent Signaling to the Regulation of p21Cip1 Degradation* , 2002, The Journal of Biological Chemistry.

[139]  G. Koehl,et al.  Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor , 2002, Nature Medicine.

[140]  Stefanie Dimmeler,et al.  Akt-Dependent Phosphorylation of p21Cip1 Regulates PCNA Binding and Proliferation of Endothelial Cells , 2001, Molecular and Cellular Biology.

[141]  Kenneth M. Yamada,et al.  Tumor suppressor PTEN: modulator of cell signaling, growth, migration and apoptosis. , 2001, Journal of cell science.

[142]  E. Kandel,et al.  Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. , 2001, Genes & development.

[143]  M. Hung,et al.  Cytoplasmic localization of p21Cip1/WAF1 by Akt-induced phosphorylation in HER-2/neu-overexpressing cells , 2001, Nature Cell Biology.

[144]  E. Kandel,et al.  Akt/Protein Kinase B Inhibits Cell Death by Preventing the Release of Cytochrome c from Mitochondria , 1999, Molecular and Cellular Biology.

[145]  Richard A. Roth,et al.  Regulation of GLUT1 Gene Transcription by the Serine/Threonine Kinase Akt1* , 1999, The Journal of Biological Chemistry.

[146]  John Calvin Reed,et al.  Regulation of cell death protease caspase-9 by phosphorylation. , 1998, Science.

[147]  A. Gingras,et al.  4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. , 1998, Genes & development.

[148]  D. Vertommen,et al.  Phosphorylation and Activation of Heart 6-Phosphofructo-2-kinase by Protein Kinase B and Other Protein Kinases of the Insulin Signaling Cascades* , 1997, The Journal of Biological Chemistry.

[149]  P. Cohen,et al.  Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα , 1997, Current Biology.

[150]  M. Wigler,et al.  PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer , 1997, Science.

[151]  M. Birnbaum,et al.  Expression of a Constitutively Active Akt Ser/Thr Kinase in 3T3-L1 Adipocytes Stimulates Glucose Uptake and Glucose Transporter 4 Translocation* , 1996, The Journal of Biological Chemistry.

[152]  C. Thompson,et al.  Apoptosis Meets Signal Transduction: Elimination of a BAD Influence , 1996, Cell.

[153]  Elizabeth Yang,et al.  Serine Phosphorylation of Death Agonist BAD in Response to Survival Factor Results in Binding to 14-3-3 Not BCL-XL , 1996, Cell.

[154]  P. Cohen,et al.  Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B , 1995, Nature.

[155]  Stuart L. Schreiber,et al.  A mammalian protein targeted by G1-arresting rapamycin–receptor complex , 1994, Nature.

[156]  M. Caligiuri,et al.  A cell initiating human acute myeloid leukaemia after transplantation into SCID mice , 1994, Nature.

[157]  E. Schaftingen,et al.  A kinetic study of pyrophosphate: fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. , 1982, European journal of biochemistry.

[158]  M. Konopleva,et al.  The dual PI3 kinase/mTOR inhibitor PI-103 prevents p53 induction by Mdm2 inhibition but enhances p53-mediated mitochondrial apoptosis in p53 wild-type AML , 2008, Leukemia.

[159]  J. Tamburini,et al.  Mammalian target of rapamycin (mTOR) inhibition activates phosphatidylinositol 3-kinase/Akt by up-regulating insulin-like growth factor-1 receptor signaling in acute myeloid leukemia: rationale for therapeutic inhibition of both pathways. , 2008, Blood.

[160]  J. Testa,et al.  Activation of AKT kinases in cancer: implications for therapeutic targeting. , 2005, Advances in cancer research.