The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation

Abstract A generalization of the Camassa–Holm equation, a model for shallow water waves, is investigated. Using the pseudoparabolic regularization technique, its local well-posedness in Sobolev space H s ( R ) with s > 3 2 is established via a limiting procedure. In addition, a sufficient condition for the existence of weak solutions of the equation in lower order Sobolev space H s with 1 s ⩽ 3 2 is developed.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  R. Danchin A note on well-posedness for Camassa-Holm equation , 2003 .

[3]  J. Bona,et al.  The initial-value problem for the Korteweg-de Vries equation , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  H. Holden,et al.  WELL-POSEDNESS OF HIGHER-ORDER CAMASSA-HOLM EQUATIONS , 2009 .

[5]  A. Constantin Existence of permanent and breaking waves for a shallow water equation: a geometric approach , 2000 .

[6]  Z. Yin On the Blow-Up Scenario for the Generalized Camassa–Holm Equation , 2004 .

[7]  Gerard Misio łek A shallow water equation as a geodesic flow on the Bott-Virasoro group , 1998 .

[8]  Kenneth H. Karlsen,et al.  Global Weak Solutions to a Generalized Hyperelastic-rod Wave Equation , 2005, SIAM J. Math. Anal..

[9]  Thomas Kappeler,et al.  On geodesic exponential maps of the Virasoro group , 2007 .

[10]  L. Tian,et al.  New peaked solitary wave solutions of the generalized Camassa-Holm equation , 2004 .

[11]  Guillermo Rodriguez-Blanco On the Cauchy problem for the Camassa-Holm equation , 2001 .

[12]  Shinar Kouranbaeva The Camassa–Holm equation as a geodesic flow on the diffeomorphism group , 1998, math-ph/9807021.

[13]  Yang Xu,et al.  The compact and noncompact structures for two types of generalized Camassa-Holm-KP equations , 2008, Math. Comput. Model..

[14]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[15]  S. Hakkaev,et al.  Local Well-Posedness and Orbital Stability of Solitary Wave Solutions for the Generalized Camassa–Holm Equation , 2005 .

[16]  P. Olver,et al.  Well-posedness and Blow-up Solutions for an Integrable Nonlinearly Dispersive Model Wave Equation , 2000 .

[17]  J. Lenells Traveling wave solutions of the Camassa-Holm equation , 2005 .

[18]  V. Gerdjikov,et al.  Inverse scattering transform for the Camassa–Holm equation , 2006, Inverse Problems.

[19]  R. Johnson,et al.  On solutions of the Camassa-Holm equation , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  O. Glass Controllability and asymptotic stabilization of the Camassa–Holm equation , 2008 .

[21]  Y. Ohta,et al.  An integrable semi-discretization of the Camassa–Holm equation and its determinant solution , 2008, 0805.2843.

[22]  A. Bressan,et al.  GLOBAL DISSIPATIVE SOLUTIONS OF THE CAMASSA–HOLM EQUATION , 2007 .

[23]  A. Alexandrou Himonas,et al.  The Cauchy problem for an integrable shallow-water equation , 2001, Differential and Integral Equations.

[24]  J. Escher,et al.  Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation , 1998 .

[25]  W. Strauss,et al.  Stability of peakons , 2000 .

[26]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[27]  Adrian Constantin,et al.  The trajectories of particles in Stokes waves , 2006 .

[28]  Abdul-Majid Wazwaz,et al.  A class of nonlinear fourth order variant of a generalized Camassa-Holm equation with compact and noncompact solutions , 2005, Appl. Math. Comput..

[29]  A. Bressan,et al.  Global Conservative Solutions of the Camassa–Holm Equation , 2007 .

[30]  Adrian Constantin,et al.  A shallow water equation on the circle , 1999 .

[31]  Darryl D. Holm Peakons , 2009, 0908.4351.

[32]  Ping Zhang,et al.  ON THE UNIQUENESS AND LARGE TIME BEHAVIOR OF THE WEAK SOLUTIONS TO A SHALLOW WATER EQUATION , 2002 .

[33]  Ping Zhang,et al.  On the weak solutions to a shallow water equation , 2000 .

[34]  Ping Zhang,et al.  On the local wellposedness of 3-D water wave problem with vorticity , 2007 .

[35]  Zhaoyang Yin,et al.  Global existence and blow-up phenomena for the weakly dissipative Camassa-Holm equation , 2009 .

[36]  H. P. McKean,et al.  Fredholm determinants and the Camassa‐Holm hierarchy , 2003 .

[37]  B. Guo,et al.  Time periodic solution of the viscous Camassa-Holm equation , 2006 .

[38]  Well posedness for a higher order modified Camassa–Holm equation , 2009 .

[39]  H. Holden,et al.  WELLPOSEDNESS FOR A PARABOLIC-ELLIPTIC SYSTEM , 2005 .

[40]  R. Johnson,et al.  Camassa–Holm, Korteweg–de Vries and related models for water waves , 2002, Journal of Fluid Mechanics.

[41]  R. McLachlan,et al.  Well-posedness of modified Camassa-Holm equations , 2009 .

[42]  Joachim Escher,et al.  Particle trajectories in solitary water waves , 2007 .

[43]  A. Constantin,et al.  Geodesic flow on the diffeomorphism group of the circle , 2003 .

[44]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[45]  Guo Boling,et al.  Two new types of bounded waves of CH-γ equation , 2005 .

[46]  Adrian Constantin,et al.  Stability of the Camassa-Holm solitons , 2002, J. Nonlinear Sci..

[47]  A. Constantin,et al.  The Hydrodynamical Relevance of the Camassa–Holm and Degasperis–Procesi Equations , 2007, 0709.0905.

[48]  W. Walter Differential and Integral Inequalities , 1970 .