Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies

We have quantitatively measured the linear and the nonsaturable absorption as well as the absorption modulation and its recovery time in as-grown and annealed low-temperature (LT) GaAs. Correlation of the optical data with As antisite (AsGa) defect densities yields the absorption cross section and the saturation parameter of the dominant AsGa to the conduction-band defect transition. We show that this defect transition is mainly responsible for the large nonsaturable absorption in as-grown LT GaAs with fast recovery times. Reducing the AsGa density by annealing yields an optimized material with small nonsaturable absorption, high absorption modulation, and fast recovery times.

[1]  Eicke R. Weber,et al.  Femtosecond response times and high optical nonlinearity in beryllium-doped low-temperature grown GaAs , 1999 .

[2]  P. Smith,et al.  Ultrafast all-optical switching in an asymmetric Fabry-Perot device using low-temperature-grown GaAs , 1998, IEEE Photonics Technology Letters.

[3]  S. Benjamin,et al.  Optical characterization of low-temperature-grown GaAs for ultrafast all-optical switching devices , 1998 .

[4]  J. W. Huang,et al.  ULTRAFAST CARRIER TRAPPING IN OXYGEN-DOPED METAL-ORGANIC VAPOR PHASE EPITAXY GAAS , 1997 .

[5]  U. Keller,et al.  Ultrafast high‐intensity nonlinear absorption dynamics in low‐temperature grown gallium arsenide , 1996 .

[6]  Michael R. Melloch,et al.  The role of point defects and arsenic precipitates in carrier trapping and recombination in low‐temperature grown GaAs , 1996 .

[7]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[8]  Y. Kawamura,et al.  Ultrafast 1.55 μm all‐optical switching using low‐temperature‐grown multiple quantum wells , 1996 .

[9]  P. Kiesel,et al.  Above band gap absorption spectra of the arsenic antisite defect in low temperature grown GaAs and AlGaAs , 1996 .

[10]  U. Keller,et al.  Design and operation of antiresonant Fabry–Perot saturable semiconductor absorbers for mode-locked solid-state lasers , 1995 .

[11]  Eicke R. Weber,et al.  Mechanism responsible for the semi‐insulating properties of low‐temperature‐grown GaAs , 1994 .

[12]  David D. Nolte,et al.  Optical scattering and absorption by metal nanoclusters in GaAs , 1994 .

[13]  G. Witt LTMBE GaAs: present status and perspectives , 1993 .

[14]  Weber,et al.  Electrical spectroscopy of GaAs with intrinsic illumination: The optical recovery of EL2. , 1992, Physical review. B, Condensed matter.

[15]  M. Melloch,et al.  Photoemission spectroscopy of GaAs:As photodiodes , 1992 .

[16]  Gerard Mourou,et al.  Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures , 1991 .

[17]  Michael R. Melloch,et al.  Formation of arsenic precipitates in GaAs buffer layers grown by molecular beam epitaxy at low substrate temperatures , 1990 .

[18]  N. Olsson,et al.  Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers , 1989 .

[19]  Samuelson,et al.  Identification of a second energy level of EL2 in n-type GaAs. , 1988, Physical review. B, Condensed matter.

[20]  L. Samuelson,et al.  Hole photoionization cross sections of EL2 in GaAs , 1988 .

[21]  Arthur L. Smirl,et al.  Picosecond photorefractive and free-carrier transient energy transfer in GaAs at 1 mu m , 1988 .

[22]  Park,et al.  Room-temperature optical nonlinearities in GaAs. , 1986, Physical review letters.