Connectivity-based segregation of the human striatum predicts personality characteristics

[1]  Uta Frith,et al.  Implicit and Explicit Processes in Social Cognition , 2008, Neuron.

[2]  Juha Veijola,et al.  Inter-correlations between Cloninger's temperament dimensions — A meta-analysis , 2008, Psychiatry Research.

[3]  Richard S. J. Frackowiak,et al.  Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia , 2008, The Journal of Neuroscience.

[4]  Michael X. Cohen,et al.  Covariance‐based subdivision of the human striatum using T1‐weighted MRI , 2008, The European journal of neuroscience.

[5]  Bernd Weber,et al.  Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making , 2008, NeuroImage.

[6]  Howard Eichenbaum,et al.  The amygdala modulates neuronal activation in the hippocampus in response to spatial novelty , 2008, Hippocampus.

[7]  Timothy Edward John Behrens,et al.  Cerebral Cortex doi:10.1093/cercor/bhm167 Anatomical Connectivity of the Subgenual Cingulate Region Targeted with Deep Brain Stimulation for Treatment-Resistant Depression , 2007 .

[8]  K. Fliessbach,et al.  Social Comparison Affects Reward-Related Brain Activity in the Human Ventral Striatum , 2007, Science.

[9]  Zhiyuan Ma,et al.  Hippocampus modulates the behaviorally‐sensitizing effects of nicotine in a rat model of novelty‐seeking: Potential role for mossy fibers , 2007, Hippocampus.

[10]  S. Donaldson,et al.  Role of dopamine D1 receptors in novelty seeking in adult female Long-Evans rats , 2007, Brain Research Bulletin.

[11]  S. Leh,et al.  Fronto-striatal connections in the human brain: A probabilistic diffusion tractography study , 2007, Neuroscience Letters.

[12]  Timothy Edward John Behrens,et al.  Triangulating a Cognitive Control Network Using Diffusion-Weighted Magnetic Resonance Imaging (MRI) and Functional MRI , 2007, The Journal of Neuroscience.

[13]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[14]  S. Haber,et al.  Reward-Related Cortical Inputs Define a Large Striatal Region in Primates That Interface with Associative Cortical Connections, Providing a Substrate for Incentive-Based Learning , 2006, The Journal of Neuroscience.

[15]  T. Robbins,et al.  Neural systems of reinforcement for drug addiction: from actions to habits to compulsion , 2005, Nature Neuroscience.

[16]  Timothy Edward John Behrens,et al.  Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography , 2005, The Journal of Neuroscience.

[17]  J. Lisman,et al.  The Hippocampal-VTA Loop: Controlling the Entry of Information into Long-Term Memory , 2005, Neuron.

[18]  S. Quartz,et al.  Getting to Know You: Reputation and Trust in a Two-Person Economic Exchange , 2005, Science.

[19]  N. Swindale,et al.  Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans , 2004, Annals of neurology.

[20]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[21]  Timothy Edward John Behrens,et al.  Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging , 2003, Nature Neuroscience.

[22]  Nikolaus R. McFarland,et al.  The Place of the Thalamus in Frontal Cortical-Basal Ganglia Circuits , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[23]  J. Hollerman,et al.  Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. , 2000, Progress in brain research.

[24]  C. R. Cloninger,et al.  A psychobiological model of temperament and character. , 1993, Archives of general psychiatry.

[25]  T. Robbins,et al.  Limbic-striatal interactions in reward-related processes , 1989, Neuroscience & Biobehavioral Reviews.