Model-based analyses: Promises, pitfalls, and example applications to the study of cognitive control

We discuss a recent approach to investigating cognitive control, which has the potential to deal with some of the challenges inherent in this endeavour. In a model-based approach, the researcher defines a formal, computational model that performs the task at hand and whose performance matches that of a research participant. The internal variables in such a model might then be taken as proxies for latent variables computed in the brain. We discuss the potential advantages of such an approach for the study of the neural underpinnings of cognitive control and its pitfalls, and we make explicit the assumptions underlying the interpretation of data obtained using this approach.

[1]  I. L. Nieuwenhuis,et al.  The role of the ventromedial prefrontal cortex in memory consolidation , 2011, Behavioural Brain Research.

[2]  William D. Penny,et al.  Bayesian model selection maps for group studies , 2009, NeuroImage.

[3]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[4]  M. Rushworth,et al.  General Mechanisms for Making Decisions? This Review Comes from a Themed Issue on Cognitive Neuroscience Edited the Representation of Value and Reward Expectations in Frontal Cortex Reward Prediction Errors and Learning Rates Other Types of Prediction Error , 2022 .

[5]  Karl J. Friston,et al.  A Dual Role for Prediction Error in Associative Learning , 2008, Cerebral cortex.

[6]  D. Parkinson,et al.  Bayesian Methods in Cosmology: Model selection and multi-model inference , 2009 .

[7]  W. Newsome,et al.  The Trouble with Choice: Studying Decision Variables in the Brain , 2009 .

[8]  S. Debener,et al.  Trial-by-Trial Fluctuations in the Event-Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise , 2008, The Journal of Neuroscience.

[9]  K. R. Ridderinkhof,et al.  Striatum and pre-SMA facilitate decision-making under time pressure , 2008, Proceedings of the National Academy of Sciences.

[10]  R. Dolan,et al.  Neuroimaging of Cognition: Past, Present, and Future , 2008, Neuron.

[11]  Scott D. Brown,et al.  The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.

[12]  Mark W Woolrich,et al.  Associative learning of social value , 2008, Nature.

[13]  J. Mattingley,et al.  Human medial frontal cortex activity predicts learning from errors. , 2008, Cerebral cortex.

[14]  Michael X. Cohen,et al.  Neurocomputational mechanisms of reinforcement-guided learning in humans: A review , 2008, Cognitive, affective & behavioral neuroscience.

[15]  Karl J. Friston,et al.  Influence of Uncertainty and Surprise on Human Corticospinal Excitability during Preparation for Action , 2008, Current Biology.

[16]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[17]  Timothy E. J. Behrens,et al.  Choice, uncertainty and value in prefrontal and cingulate cortex , 2008, Nature Neuroscience.

[18]  Samuel M. McClure,et al.  BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area , 2008, Science.

[19]  Colin Camerer,et al.  Neuroeconomics: decision making and the brain , 2008 .

[20]  M. Walton,et al.  Probing human and monkey anterior cingulate cortex in variable environments , 2007, Cognitive, affective & behavioral neuroscience.

[21]  M. Roesch,et al.  Dopamine neurons encode the better option in rats deciding between differently delayed or sized rewards , 2007, Nature Neuroscience.

[22]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[23]  K. Doya,et al.  Understanding Neural Coding through the Model-Based Analysis of Decision Making , 2007, The Journal of Neuroscience.

[24]  Jeremy R. Reynolds,et al.  A computational model of fractionated conflict-control mechanisms in task-switching , 2007, Cognitive Psychology.

[25]  J. Gold,et al.  The neural basis of decision making. , 2007, Annual review of neuroscience.

[26]  Michael Weisberg Who is a Modeler? , 2007, The British Journal for the Philosophy of Science.

[27]  J. O'Doherty,et al.  Model‐Based fMRI and Its Application to Reward Learning and Decision Making , 2007, Annals of the New York Academy of Sciences.

[28]  Michael X. Cohen,et al.  Individual Differences and the Neural Representations of Reward Expectation and Reward Prediction Error , 2022 .

[29]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[30]  Michael X. Cohen,et al.  Behavioral / Systems / Cognitive Reinforcement Learning Signals Predict Future Decisions , 2007 .

[31]  Peter Godfrey-Smith,et al.  The strategy of model-based science , 2007 .

[32]  J. O'Doherty,et al.  The Role of the Ventromedial Prefrontal Cortex in Abstract State-Based Inference during Decision Making in Humans , 2006, The Journal of Neuroscience.

[33]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[34]  Ivan Toni,et al.  Neural dynamics of error processing in medial frontal cortex , 2005, NeuroImage.

[35]  P. Glimcher,et al.  JOURNAL OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR 2005, 84, 555–579 NUMBER 3(NOVEMBER) DYNAMIC RESPONSE-BY-RESPONSE MODELS OF MATCHING BEHAVIOR IN RHESUS MONKEYS , 2022 .

[36]  Jonathan D. Cohen,et al.  Decision making, the P3, and the locus coeruleus-norepinephrine system. , 2005, Psychological bulletin.

[37]  Angela J. Yu,et al.  Uncertainty, Neuromodulation, and Attention , 2005, Neuron.

[38]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[39]  M. Posner The Cognitive Neuroscience of Attention , 2020 .

[40]  K. R. Ridderinkhof,et al.  The Role of the Medial Frontal Cortex in Cognitive Control , 2004, Science.

[41]  David R. Anderson,et al.  Understanding AIC and BIC in Model Selection , 2004 .

[42]  Michael G. H. Coles,et al.  Anterior cingulate cortex, selection for action, and error processing , 2004 .

[43]  Karl J. Friston Learning and inference in the brain , 2003, Neural Networks.

[44]  T. Shallice,et al.  Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. , 2003, Brain : a journal of neurology.

[45]  M. Peruggia Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed.) , 2003 .

[46]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[47]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[48]  C. Carter,et al.  The Timing of Action-Monitoring Processes in the Anterior Cingulate Cortex , 2002, Journal of Cognitive Neuroscience.

[49]  T. Shallice,et al.  Task Switching : A PDP Model , 2001 .

[50]  K. R. Ridderinkhof,et al.  A computational account of altered error processing in older age: Dopamine and the error-related negativity , 2002, Cognitive, affective & behavioral neuroscience.

[51]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[52]  M. Botvinick,et al.  Conflict monitoring and cognitive control. , 2001, Psychological review.

[53]  S. G. Sterrett Physical models and fundamental laws: Using one piece of the world to tell about another , 2001 .

[54]  Refractor Vision , 2000, The Lancet.

[55]  E. Miller,et al.  The prefontral cortex and cognitive control , 2000, Nature Reviews Neuroscience.

[56]  J. Duncan,et al.  Common regions of the human frontal lobe recruited by diverse cognitive demands , 2000, Trends in Neurosciences.

[57]  E. Miller,et al.  THE PREFRONTAL CORTEX AND COGNITIVE CONTROL , 2000 .

[58]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[59]  Adrian E. Raftery,et al.  Bayes factors and model uncertainty , 1995 .

[60]  M. Posner,et al.  Localization of a Neural System for Error Detection and Compensation , 1994 .

[61]  David J. C. MacKay,et al.  Bayesian Interpolation , 1992, Neural Computation.

[62]  James L. McClelland,et al.  On the control of automatic processes: a parallel distributed processing account of the Stroop effect. , 1990, Psychological review.

[63]  E. Donchin,et al.  Is the P300 component a manifestation of context updating? , 1988, Behavioral and Brain Sciences.

[64]  R. Weale Vision. A Computational Investigation Into the Human Representation and Processing of Visual Information. David Marr , 1983 .

[65]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[66]  E. Donchin,et al.  On quantifying surprise: the variation of event-related potentials with subjective probability. , 1977, Psychophysiology.

[67]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[68]  R. Rescorla,et al.  A theory of Pavlovian conditioning : Variations in the effectiveness of reinforcement and nonreinforcement , 1972 .

[69]  David Elkind,et al.  Learning: An Introduction , 1968 .

[70]  S. Tipper,et al.  Quarterly Journal of Experimental Psychology , 1948, Nature.

[71]  G. D. Logan Task Switching , 2022 .