Local bifurcations of critical periods in a generalized 2D LV system

Abstract In this paper, we investigate a generalized two-dimensional Lotka–Volterra system which has a center. We give an inductive algorithm to compute polynomials of periodic coefficients, find structures of solutions for systems of algebraic equation corresponding to isochronous centers and weak centers of finite order, and derive conditions on parameters under which the considered equilibrium is an isochronous center or a weak center of finite order. We show that with appropriate perturbations at most two critical periods bifurcate from the center.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  V. Fairén,et al.  Lotka-Volterra representation of general nonlinear systems. , 1997, Mathematical biosciences.

[3]  Iram Gleria,et al.  The Lotka-Volterra canonical format , 2005 .

[4]  Marco Sabatini,et al.  A survey of isochronous centers , 1999 .

[5]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[6]  C. Rousseau,et al.  Local Bifurcation of Critical Periods in Vector Fields With Homogeneous Nonlinearities of the Third Degree , 1993, Canadian Mathematical Bulletin.

[7]  W. Wu ON ZEROS OF ALGEBRAIC EQUATIONS——AN APPLICATION OF RITT PRINCIPLE , 1986 .

[8]  R. May,et al.  Nonlinear Aspects of Competition Between Three Species , 1975 .

[9]  H. Farkas,et al.  Generalized Lotka–Volterra schemes and the construction of two-dimensional explodator cores and their liapunov functions via‘critical’ Hopf bifurcations , 1985 .

[10]  Jörg Waldvogel,et al.  The period in the Lotka-Volterra system is monotonic , 1986 .

[11]  Lan Zou,et al.  Local bifurcations of critical periods for cubic Liénard equations with cubic damping , 2008 .

[12]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[13]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[14]  Investigations into a class of generalized two-dimensional Lotka-Volterra schemes , 1991 .

[15]  J. Ritt Partial differential algebra , 1950 .

[16]  P. Simon The reversible LVA model , 1992 .

[17]  Z. A. Schelly,et al.  Two dimensional explodators. 2. Global analysis of the Lotka-Volterra-Brusselator (LVB) model , 1989 .

[18]  A. J. Lotka Analytical Note on Certain Rhythmic Relations in Organic Systems , 1920, Proceedings of the National Academy of Sciences.

[19]  Zhenbing Zeng,et al.  Weak centers and bifurcation of critical periods in reversible cubic systems , 2000 .

[20]  Christiane Rousseau,et al.  Local Bifurcations of Critical Periods in the Reduced Kukles System , 1997, Canadian Journal of Mathematics.

[21]  Josef Hofbauer,et al.  The theory of evolution and dynamical systems , 1988 .

[22]  Benito Herny Algebraic recasting of nonlinear systems of ODEs into universal formats , 1998 .