The Role of Grain Boundary Diffusion in the Solute Drag Effect

Molecular dynamics (MD) simulations are applied to study solute drag by curvature-driven grain boundaries (GBs) in Cu–Ag solid solution. Although lattice diffusion is frozen on the MD timescale, the GB significantly accelerates the solute diffusion and alters the state of short-range order in lattice regions swept by its motion. The accelerated diffusion produces a nonuniform redistribution of the solute atoms in the form of GB clusters enhancing the solute drag by the Zener pinning mechanism. This finding points to an important role of lateral GB diffusion in the solute drag effect. A 1.5 at.%Ag alloying reduces the GB free energy by 10–20% while reducing the GB mobility coefficients by more than an order of magnitude. Given the greater impact of alloying on the GB mobility than on the capillary driving force, kinetic stabilization of nanomaterials against grain growth is likely to be more effective than thermodynamic stabilization aiming to reduce the GB free energy.

[1]  Y. Mishin,et al.  Stress-driven grain refinement in a microstructurally stable nanocrystalline binary alloy , 2021 .

[2]  Y. Mishin,et al.  Direct Atomistic Modeling of Solute Drag by Moving Grain Boundaries , 2020, Acta Materialia.

[3]  Y. Mishin,et al.  Relationship between grain boundary segregation and grain boundary diffusion in Cu-Ag alloys , 2020, 2006.06591.

[4]  D. Srolovitz,et al.  The grain boundary mobility tensor , 2020, Proceedings of the National Academy of Sciences.

[5]  Y. Mishin Solute Drag and Dynamic Phase Transformations in Moving Grain Boundaries , 2019, Acta Materialia.

[6]  Y. Mishin,et al.  Atomistic modeling of capillary-driven grain boundary motion in Cu-Ta alloys , 2018 .

[7]  Arvind R. Kalidindi,et al.  Stability criteria for nanocrystalline alloys , 2017 .

[8]  Arvind R. Kalidindi,et al.  Phase transitions in stable nanocrystalline alloys , 2017 .

[9]  Blythe G. Clark,et al.  Grain boundary segregation in immiscible nanocrystalline alloys , 2017 .

[10]  N. Tamura,et al.  Reversal in the Size Dependence of Grain Rotation. , 2017, Physical review letters.

[11]  Y. Mishin,et al.  Microstructural evolution in a nanocrystalline Cu-Ta alloy: A combined in-situ TEM and atomistic study , 2017 .

[12]  R. Mishra,et al.  Extreme creep resistance in a microstructurally stable nanocrystalline alloy , 2016, Nature.

[13]  Y. Mishin,et al.  Disjoining potential and grain boundary premelting in binary alloys , 2016 .

[14]  Y. Mishin,et al.  Zener Pinning of Grain Boundaries and Structural Stability of Immiscible Alloys , 2016 .

[15]  Lanting Zhang,et al.  Interaction between coherent second-phase particles and migrating boundaries: Boundary effect and particle reorientation , 2016 .

[16]  J. Hochhalter,et al.  Multiscale modeling of sensory properties of Co–Ni–Al shape memory particles embedded in an Al metal matrix , 2016, Journal of Materials Science.

[17]  F. Abdeljawad,et al.  Stabilization of nanocrystalline alloys via grain boundary segregation: A diffuse interface model , 2015 .

[18]  B. Grabowski,et al.  Mechanisms and kinetics of the migration of grain boundaries containing extended defects , 2015 .

[19]  G. P. P. Pun,et al.  Angular-dependent interatomic potential for the Cu–Ta system and its application to structural stability of nano-crystalline alloys , 2015 .

[20]  R. Banerjee,et al.  Effect of Ta Solute Concentration on the Microstructural Evolution in Immiscible Cu-Ta Alloys , 2015 .

[21]  Arvind R. Kalidindi,et al.  Nanocrystalline Materials at Equilibrium: A Thermodynamic Review , 2015 .

[22]  G. P. P. Pun,et al.  Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation , 2015 .

[23]  Y. Mishin,et al.  Segregation-induced phase transformations in grain boundaries , 2015, 1506.08882.

[24]  R. Banerjee,et al.  Structure and thermal decomposition of a nanocrystalline mechanically alloyed supersaturated Cu–Ta solid solution , 2015 .

[25]  Y. Mishin An Atomistic View of Grain Boundary Diffusion , 2015, 1904.10756.

[26]  Ze Zhang,et al.  In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. , 2015, Ultramicroscopy.

[27]  M. Tschopp,et al.  Microstructure and Mechanical Properties of Bulk Nanostructured Cu-Ta Alloys Consolidated by Equal Channel Angular Extrusion , 2014 .

[28]  J. Neugebauer,et al.  Role of the mesoscale in migration kinetics of flat grain boundaries , 2014 .

[29]  H. Mao,et al.  Detecting grain rotation at the nanoscale , 2014, Proceedings of the National Academy of Sciences.

[30]  Y. Mishin,et al.  Capillary-driven grain boundary motion and grain rotation in a tricrystal: A molecular dynamics study , 2014 .

[31]  C. Schuh,et al.  Thermodynamics of stable nanocrystalline alloys: A Monte Carlo analysis , 2014 .

[32]  A. Roberts,et al.  Grain size stabilization of nanocrystalline copper at high temperatures by alloying with tantalum , 2013 .

[33]  R. Scattergood,et al.  A predictive model for thermodynamic stability of grain size in nanocrystalline ternary alloys , 2013 .

[34]  Yong-Wei Zhang,et al.  Anatomy of nanomaterial deformation: Grain boundary sliding, plasticity and cavitation in nanocrystalline Ni , 2013 .

[35]  A. Soh,et al.  Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials , 2013 .

[36]  Y. Mishin,et al.  Effect of interface phase transformations on diffusion and segregation in high-angle grain boundaries. , 2013, Physical review letters.

[37]  C. Schuh,et al.  Stability of binary nanocrystalline alloys against grain growth and phase separation , 2013 .

[38]  R. Scattergood,et al.  Thermodynamic stabilization of nanocrystalline binary alloys , 2013 .

[39]  I. Toda-Caraballo,et al.  Drag effects on grain growth dynamics , 2013 .

[40]  O. Nasello,et al.  More about Zener drag studies with Monte Carlo simulations , 2013 .

[41]  C. Schuh,et al.  Design of Stable Nanocrystalline Alloys , 2012, Science.

[42]  Y. Mishin,et al.  Thermodynamics of coherent interfaces under mechanical stresses. II. Application to atomistic simulation of grain boundaries , 2012 .

[43]  Y. Mishin,et al.  Grain boundary migration and grain rotation studied by molecular dynamics , 2012 .

[44]  Y. Mishin,et al.  Stabilization and strengthening of nanocrystalline copper by alloying with tantalum , 2012 .

[45]  Stefano Zapperi,et al.  Colloquium: Modeling friction: From nanoscale to mesoscale , 2011, 1112.3234.

[46]  Dongyang Li,et al.  A closer look at the local responses of twin and grain boundaries in Cu to stress at the nanoscale with possible transition from the P–H to the inverse P–H relation , 2010 .

[47]  S. Foiles Temperature dependence of grain boundary free energy and elastic constants , 2010 .

[48]  Y. Mishin,et al.  Atomistic modeling of interfaces and their impact on microstructure and properties , 2010 .

[49]  Y. Mishin,et al.  Thermodynamics of grain boundary premelting in alloys. II. Atomistic simulation , 2009 .

[50]  J. Warren,et al.  Thermodynamics of grain boundary premelting in alloys. I. Phase-field modeling , 2009 .

[51]  C. Schuh,et al.  Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys , 2009 .

[52]  R. Scattergood,et al.  Stabilization of nanocrystalline grain sizes by solute additions , 2008, Journal of Materials Science.

[53]  R. Kirchheim Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation , 2007 .

[54]  R. Kirchheim Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background , 2007 .

[55]  Akira Suzuki,et al.  Coupling grain boundary motion to shear deformation , 2006 .

[56]  James A. Warren,et al.  Characterization of atomic motion governing grain boundary migration , 2006 .

[57]  G. Gottstein,et al.  Atomistic simulations of grain boundary migration in copper , 2006 .

[58]  J C Hamilton,et al.  An embedded-atom potential for the Cu–Ag system , 2006 .

[59]  Steven J. Plimpton,et al.  Computing the mobility of grain boundaries , 2006, Nature materials.

[60]  L. Zepeda-Ruiz,et al.  Atomistic simulations of grain boundary pinning in CuFe alloys , 2005 .

[61]  G. Gottstein,et al.  Comparative study of grain-boundary migration and grain-boundary self-diffusion of [0 0 1] twist-grain boundaries in copper by atomistic simulations , 2005 .

[62]  D. Srolovitz,et al.  Curvature driven grain boundary migration in aluminum: molecular dynamics simulations , 2005 .

[63]  J. Taylor,et al.  A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation , 2004 .

[64]  Y. Wang,et al.  Solute segregation transition and drag force on grain boundaries , 2003 .

[65]  S. Takeuchi The mechanism of the inverse Hall-Petch relation of nanocrystals , 2001 .

[66]  H. Poulsen,et al.  In Situ Measurement of Grain Rotation During Deformation of Polycrystals , 2001, Science.

[67]  Mark Miodownik,et al.  Highly parallel computer simulations of particle pinning: zener vindicated , 2000 .

[68]  Y. Mishin,et al.  Grain boundary diffusion: recent progress and future research , 1999 .

[69]  P. A. Manohar,et al.  Five Decades of the Zener Equation , 1998 .

[70]  David J. Srolovitz,et al.  Atomistic Simulation of Curvature Driven Grain Boundary Migration , 1998 .

[71]  Chr. Herzig,et al.  Grain boundary self-diffusion in Cu polycrystals of different purity , 1997 .

[72]  Chr. Herzig,et al.  Grain boundary diffusion: fundamentals to recent developments , 1997 .

[73]  F. Flores,et al.  Interfaces in crystalline materials , 1994, Thin Film Physics and Applications.

[74]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[75]  K. Easterling,et al.  The influence of particle shape on zener drag , 1990 .

[76]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[77]  R. Balluffi Vacancy defect mobilities and binding energies obtained from annealing studies , 1976 .

[78]  K. Lücke,et al.  On the theory of impurity controlled grain boundary motion , 1971 .

[79]  John W. Cahn,et al.  The Impurity‐Drag Effect in Grain Boundary Motion , 1962 .

[80]  R. Smoluchowski Theory of Grain Boundary Motion , 1951 .

[81]  A. Stukowski Modelling and Simulation in Materials Science and Engineering Visualization and analysis of atomistic simulation data with OVITO – the Open Visualization Tool , 2009 .

[82]  Y. Mishin,et al.  Atomistic Modeling of Point Defects and Diffusion in Copper Grain Boundaries , 2003 .

[83]  H. Gleiter,et al.  Nanostructured materials: basic concepts and microstructure☆ , 2000 .

[84]  Y. Mishin,et al.  Fundamentals of grain and interphase boundary diffusion , 1995 .

[85]  O. Hunderi,et al.  On the Zener drag , 1985 .

[86]  K. Lücke,et al.  On the Theory of Grain Boundary Motion , 1972 .

[87]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .