Discrimination between linear and non-linear models describing retention data of alkylbenzenes in gas-chromatography

SummaryDetailed statistical analysis is presented to describe the retention indices of alkylbenzenes as a function of their physical (boiling point, modrefraction) and topological (connectivity and complexity indices) properties. With the help of several statistical characteristics (examination of residuals, F test, partial F test, termination criteria, correlation indices) a discrimination is made among different models. A nonlinear equation was chosen which describes the retention data on slightly polar phases with the practically attainable precision. A comparison with literature sources shows that this equation provides the smallest residual error and, hence, it can be applied for prediction purposes. A correlation was found between the preexponential factor in the simple exponential model and the polarity of stationary phases on the Tarján scale.

[1]  N. Dimov Accuracy in modelling of retention indices in gas chromatography , 1986 .

[2]  M. Guillén,et al.  Empirical multiparameter relationships between retention indices and physicochemical properties of alkylbenzenes , 1983 .

[3]  L. Rohrschneider Zur Frage der Linearität der n-Alkan-Geraden , 1969 .

[4]  L. Buydens,et al.  Prediction of gas chromatography retention indexes from linear free energy and topological parameters , 1981 .

[5]  F. Vernon,et al.  The retention index system applied to alkylbenzenes and monosubstituted derivatives , 1983 .

[6]  M. Guillén,et al.  Biparameter equations for calculating Kovats retention indices of hydrocarbons , 1985 .

[7]  Relationships between gas chromatographic retention index and molecular structure , 1980 .

[8]  T. Tóth Use of capillary gas chromatography in collecting retention and chemical information for the analysis of complex petrochemical mixtures , 1983 .

[9]  Roman Kaliszan,et al.  Quantitative structure-chromatographic retention relationships , 1987 .

[10]  K. Héberger,et al.  On the errors of Arrhenius parameters and estimated rate constant values , 1987 .

[11]  M. Guillén,et al.  Prediction of gas chromatographic retention indices of linear, branched, and cyclic alkanes from their physicochemical properties , 1984 .

[12]  T. Brubaker,et al.  Nonlinear Parameter Estimation , 1979 .

[13]  V. M. Nabivach,et al.  Relationship between the gas chromatographic behaviour and the molecular structure of hydrocarbon samples and various stationary phases , 1980 .

[14]  C. Döring,et al.  Kapillar‐gaschromatographische Charakterisierung von C10‐ bis C12‐Aromaten , 1974 .

[15]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[16]  N. Dimov,et al.  Correlation equations for prediction of gas chromatographic separation of hydrocarbons on squalane , 1979 .

[17]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[18]  H. Lamparczyk,et al.  The role of electric interactions in the retention index concept; Implications in quantitative structure-retention studies , 1984 .

[19]  Methods of Correlation and Regression Analysis, Linear and Curvilinear , 1959 .

[20]  K. Héberger Empirical correlations between gas-chromatographic retention data and physical or topological properties of solute molecules , 1989 .

[21]  N. Petsev,et al.  Structure-retention correlations of hydrocarbons in GLC and GSC alkenylbenzenes , 1987 .

[22]  O. Mekenyan,et al.  An exact quantitative structure/gas-chromatographic retention relationship for alkylbenzenes , 1988 .

[23]  P. R. Rider An introduction to modern statistical methods , 1939 .

[24]  L. Ettre Generalized equations to evaluate the gas hold-up time of chromatographic systems , 1980 .

[25]  F. Saura-calixto,et al.  Analysis of Aromatic Hydrocarbons. Prediction of Gas Chromatographic Retention Indices on Different Stationary Phases and Temperatures , 1984 .

[26]  R. V. Golovnya,et al.  Violation of the linearity principle of additivity of sorption energy in chromatography: a universal equation describing retention behavior , 1986 .

[27]  Norman R. Draper,et al.  Applied regression analysis (2. ed.) , 1981, Wiley series in probability and mathematical statistics.

[28]  C. Blanco,et al.  The chromatographic behaviour of cycloolefins on stationary phases of different polarity. Prediction of their retention indices and boiling points , 1987 .

[29]  H. Oelert,et al.  Multiple korrelation von retentionsindizes , 1979 .

[30]  G. Tarján,et al.  Twenty-fifth anniversary of the retention index system in gas—liquid chromatography , 1983 .

[31]  M. Guillén,et al.  Prediction of kovats retention index of saturated alcohols on stationary phases of different polarity , 1987 .

[32]  L. Soják,et al.  Characterization of monoalkylcyclopentadiens by retention-structure correlation in capillary gas chromatography , 1987 .

[33]  R. V. Golovnya,et al.  The reason for non-linear variation of specific retention volumes and retention indices for members of homologous series of organic compounds , 1983 .

[34]  J. Canga,et al.  Analysis of Complex Mixtures of Aromatic Hydrocarbons. Relations between Retention Index and Molecular Structure , 1982 .

[35]  David Mautner Himmelblau,et al.  Process analysis by statistical methods , 1970 .

[36]  I. Hermecz,et al.  Some problems in the correlation of molecular parameters and the connectivity index , 1987 .

[37]  K. Héberger Empirical correlation equations describing retention data of hydrocarbons on dinonylphatalate and polyethyleneglycol 4000 , 1988 .

[38]  A. Kiss,et al.  General contribution to the theory of retention index systems in gas-liquid chromatography : III. Contribution to the polarity of gas chromatographic stationary phases expressed by retention indices , 1976 .

[39]  A. Orav,et al.  Retention and thermodynamics of solution of n-alkenes in OV-101 , 1987 .

[40]  F. S. Calixto,et al.  Retention index, connectivity index and Van der Waals' volume of alkanes (GLC) , 1982 .

[41]  B. Meklati,et al.  Testing for linearity in retention time — Carbon number plots for n-alkanes , 1988 .