Predicting human mobility through the assimilation of social media traces into mobility models

Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.

[1]  Zoltán Toroczkai,et al.  Predicting commuter flows in spatial networks using a radiation model based on temporal ranges , 2014, Nature Communications.

[2]  Alessandro Vespignani,et al.  Multiscale mobility networks and the spatial spreading of infectious diseases , 2009, Proceedings of the National Academy of Sciences.

[3]  G. Zipf The P 1 P 2 D Hypothesis: On the Intercity Movement of Persons , 1946 .

[4]  M. Batty,et al.  Gravity versus radiation models: on the importance of scale and heterogeneity in commuting flows. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Franz Rothlauf,et al.  Gravity models for airline passenger volume estimation , 2007 .

[6]  V. Isham,et al.  Five challenges for spatial epidemic models , 2015, Epidemics.

[7]  S. Merler,et al.  The role of population heterogeneity and human mobility in the spread of pandemic influenza , 2010, Proceedings of the Royal Society B: Biological Sciences.

[8]  Carlo Ratti,et al.  Geo-located Twitter as proxy for global mobility patterns , 2013, Cartography and geographic information science.

[9]  David A. Shamma,et al.  YFCC100M , 2015, Commun. ACM.

[10]  Pere Colet,et al.  Tweets on the Road , 2014, PloS one.

[11]  Mark Dredze,et al.  Twitter as a Source of Global Mobility Patterns for Social Good , 2016, ArXiv.

[12]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[13]  Nicola Perra,et al.  Social Phenomena: From Data Analysis to Models , 2015 .

[14]  Daniele Barchiesi,et al.  Modelling human mobility patterns using photographic data shared online , 2015, Royal Society Open Science.

[15]  Neil M. Ferguson,et al.  Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling , 2012, PLoS Comput. Biol..

[16]  Víctor M. Eguíluz,et al.  Entangling Mobility and Interactions in Social Media , 2013, PloS one.

[17]  Manuel Cebrián,et al.  Social Media Fingerprints of Unemployment , 2014, PloS one.

[18]  Xiao Liang,et al.  Unraveling the origin of exponential law in intra-urban human mobility , 2012, Scientific Reports.

[19]  Marta C. González,et al.  A universal model for mobility and migration patterns , 2011, Nature.

[20]  F. Calabrese,et al.  Urban gravity: a model for inter-city telecommunication flows , 2009, 0905.0692.

[21]  Mikko Alava,et al.  Patterns, Entropy, and Predictability of Human Mobility and Life , 2012, PloS one.

[22]  Enrique Frías-Martínez,et al.  Cross-Checking Different Sources of Mobility Information , 2014, PloS one.

[23]  D. McFadden,et al.  URBAN TRAVEL DEMAND - A BEHAVIORAL ANALYSIS , 1977 .

[24]  Nathan Eagle,et al.  Limits of Predictability in Commuting Flows in the Absence of Data for Calibration , 2014, Scientific Reports.

[25]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[26]  Albert-László Barabási,et al.  Limits of Predictability in Human Mobility , 2010, Science.

[27]  Xin Lu,et al.  Approaching the Limit of Predictability in Human Mobility , 2013, Scientific Reports.

[28]  Hossam S. Hassanein,et al.  Optimal predictive resource allocation: Exploiting mobility patterns and radio maps , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[29]  Caroline O. Buckee,et al.  Evaluating Spatial Interaction Models for Regional Mobility in Sub-Saharan Africa , 2015, PLoS Comput. Biol..

[30]  Wen-Xu Wang,et al.  Universal predictability of mobility patterns in cities , 2013, Journal of The Royal Society Interface.

[31]  E. Ravenstein The Laws of Migration , 1885, Encyclopedia of Gerontology and Population Aging.

[32]  David A. Shamma,et al.  The New Data and New Challenges in Multimedia Research , 2015, ArXiv.

[33]  Cecilia Mascolo,et al.  An Empirical Study of Geographic User Activity Patterns in Foursquare , 2011, ICWSM.

[34]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[35]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[36]  Marta C. González,et al.  Origin-destination trips by purpose and time of day inferred from mobile phone data , 2015 .

[37]  Leo Breiman,et al.  Stacked regressions , 2004, Machine Learning.

[38]  Soong Moon Kang,et al.  Structure of Urban Movements: Polycentric Activity and Entangled Hierarchical Flows , 2010, PloS one.

[39]  J. Gaudart,et al.  Using Mobile Phone Data to Predict the Spatial Spread of Cholera , 2015, Scientific Reports.

[40]  Yong Gao,et al.  Uncovering Patterns of Inter-Urban Trip and Spatial Interaction from Social Media Check-In Data , 2013, PloS one.

[41]  Jari Saramäki,et al.  Inferring human mobility using communication patterns , 2014, Scientific Reports.

[42]  Injong Rhee,et al.  On the levy-walk nature of human mobility , 2011, TNET.

[43]  David L. Smith,et al.  Quantifying the Impact of Human Mobility on Malaria , 2012, Science.

[44]  Z. Néda,et al.  Human Mobility in a Continuum Approach , 2012, PloS one.

[45]  Zbigniew Smoreda,et al.  On the Use of Human Mobility Proxies for Modeling Epidemics , 2013, PLoS Comput. Biol..

[46]  Ravi Jain,et al.  Evaluating Next-Cell Predictors with Extensive Wi-Fi Mobility Data , 2006, IEEE Transactions on Mobile Computing.

[47]  Ramona Marguta,et al.  Impact of human mobility on the periodicities and mechanisms underlying measles dynamics , 2015, Journal of The Royal Society Interface.

[48]  Cecilia Mascolo,et al.  A Tale of Many Cities: Universal Patterns in Human Urban Mobility , 2011, PloS one.

[49]  Guillaume Deffuant,et al.  A Universal Model of Commuting Networks , 2012, PloS one.

[50]  S. Stouffer Intervening opportunities: a theory relating mobility and distance , 1940 .

[51]  H. Stanley,et al.  Gravity model in the Korean highway , 2007, 0710.1274.