Internal Model Control for Shape Memory Alloy Actuators using Fuzzy Based preisach Model

This paper investigates a possible application of Preisach model to control Shape Memory Alloy (SMA) actuators using an internal model control strategy. The developed strategy consists in including the Preisach hysteresis model of SMA actuator and the inverse Preisach model within the control structure. In this work, an extrema input hystory and a fuzzy inference is utilized to replace the classical Preisach model. This allows to reduce a large amount of experimental parameters and computation time of the classical Preisach model. To demonstrate the effectiveness of the proposed controller in improving control performance and hysteresis compensation of SMA actuators, experimental results from real time control are presented.

[1]  G. R. Galluzzo,et al.  Preisach function identification by neural networks , 2002 .

[2]  Vincent Hayward,et al.  Phase control approach to hysteresis reduction , 2001, IEEE Trans. Control. Syst. Technol..

[3]  Ying-Shieh Kung,et al.  Precision Control of a Piezoceramic Actuator Using Neural Networks , 2004 .

[4]  V. Hayward,et al.  On the linear compensation of hysteresis , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[5]  Sylvie Galichet,et al.  Nonlinear internal model control: application of inverse model based fuzzy control , 2003, IEEE Trans. Fuzzy Syst..

[6]  Yonghong Tan,et al.  Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator , 2006 .

[7]  Ma Pei-sun,et al.  A prototype micro-wheeled-robot using SMA actuator , 2004 .

[8]  Ralph C. Smith,et al.  Nonlinear adaptive parameter estimation algorithms for hysteresis models of magnetostrictive actuators , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  Eiichi Yoshida,et al.  Miniature self-reconfigurable modular machine using shape memory alloy , 1998, Adv. Robotics.

[10]  I. Mayergoyz Mathematical models of hysteresis and their applications , 2003 .

[11]  Jie Li,et al.  Internal Model Control for Magnetic Suspension System , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[12]  Frantisek Solc,et al.  Shape memory alloys - unconventional actuators , 2003, IEEE International Conference on Industrial Technology, 2003.

[13]  I. D. Mayergoyz CHAPTER 1 – The Classical Preisach Model of Hysteresis , 2003 .

[14]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[15]  John T. Wen,et al.  Preisach modeling of piezoceramic and shape memory alloy hysteresis , 1997 .

[16]  L. Vu-Quoc,et al.  A static hysteresis model for power ferrites , 2002 .

[17]  M. Benrejeb,et al.  An internal model control strategy using artificial neural networks for a class of nonlinear systems , 2002, IEEE International Conference on Systems, Man and Cybernetics.

[18]  Amr A. Adly,et al.  Using neural networks in the identification of Preisach-type hysteresis models , 1998 .

[19]  Kyoung Kwan Ahn,et al.  Improvement of the performance of hysteresis compensation in SMA actuators by using inverse Preisach model in closed — loop control system , 2006 .

[20]  Chia-Hsiang Menq,et al.  Hysteresis compensation in electromagnetic actuators through Preisach model inversion , 2000 .

[21]  Jinggang Zhang,et al.  Adaptive internal model control of permanent magnet synchronous motor drive system , 2005, 2005 International Conference on Electrical Machines and Systems.