An Offset Compensation Method With Low Residual Drift for Integrated Thermal Flow Sensors

A new offset compensation approach for integrated thermal flow meters is described. The method is based on micromachined differential flow sensing structures with the heater split into two identical and symmetrical sections. The power unbalance between the two heaters is used to compensate the intrinsic sensor offset. The effectiveness of the approach is proven by means of experiments performed on micro flow meters fabricated by postprocessing chips produced with a commercial microelectronic process. The tests were devoted to demonstrate the robustness of the offset compensation with respect to variation of both the gas temperature and type.

[1]  R. Schmidt,et al.  Cold Gas Micro Propulsion Prototype for Very Fine Spacecraft Attitude/Position Control , 2006 .

[2]  W. Dötzel,et al.  Asymmetrical locations of heaters and sensors relative to each other using heater arrays: a novel method for designing multi-range electrocaloric mass-flow sensors , 1997 .

[3]  Massimo Piotto,et al.  Development Activities on an Advanced Propellant Flow Control Unit , 2004 .

[4]  Kofi A. A. Makinwa,et al.  Compensation of packaging asymmetry in a 2-D wind sensor , 2002, Proceedings of IEEE Sensors.

[5]  Massimo Piotto,et al.  Effects of gas type on the sensitivity and transition pressure of integrated thermal flow sensors , 2006 .

[6]  Massimo Piotto,et al.  A double heater integrated gas flow sensor with thermal feedback , 2005 .

[7]  P. Bruschi,et al.  Offset compensation of integrated thermal flow sensors by means of split heater microstructures , 2009, 2009 Symposium on Design, Test, Integration & Packaging of MEMS/MOEMS.

[8]  A. Reisman,et al.  The Controlled Etching of Silicon in Catalyzed Ethylenediamine‐Pyrocatechol‐Water Solutions , 1979 .

[9]  O. Brand,et al.  Micromachined thermally based CMOS microsensors , 1998, Proc. IEEE.

[10]  Jeongho Kang,et al.  Integrated comfort sensing system on indoor climate , 2000 .

[11]  G. Kaltsas,et al.  Characterization of a silicon thermal gas-flow sensor with porous silicon thermal isolation , 2002 .

[12]  W.J. Fleming,et al.  New Automotive Sensors—A Review , 2008, IEEE Sensors Journal.

[13]  Nam-Trung Nguyen A novel thermal sensor concept for flow direction and flow velocity , 2005, IEEE Sensors Journal.

[14]  Massimo Piotto,et al.  A single chip, double channel thermal flow meter , 2009 .

[15]  Nam-Trung Nguyen,et al.  Micromachined flow sensors—a review , 1997, Flow Measurement and Instrumentation.

[16]  Kofi A. A. Makinwa,et al.  A smart wind sensor using thermal sigma-delta modulation techniques , 2002 .

[17]  Massimo Piotto,et al.  FLICKER NOISE IN HETEROCYCLIC CONDUCTING POLYMER THIN FILM RESISTORS , 2002 .

[18]  B. W. Oudheusden Silicon thermal flow sensors , 1992 .

[19]  Miko Elwenspoek,et al.  Low-drift flow sensor with zero-offset thermopile-based power feedback , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[20]  M. C. A. M. Van Der List,et al.  Development of an Advanced Proportional Xenon Feed Assembly for the GOCE Spacecraft , 2004 .

[21]  R. Besser,et al.  A micromachined thin-film gas flow sensor for microchemical reactors , 2006 .

[22]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[23]  Kofi A. A. Makinwa,et al.  A wind-sensor interface using thermal sigma delta modulation techniques , 2001 .

[24]  Massimo Piotto,et al.  Postprocessing, readout and packaging methods for integrated gas flow sensors , 2009, Microelectron. J..

[25]  S. A. Tison,et al.  A critical evaluation of thermal mass flow meters , 1996 .

[26]  Henrik Kratz,et al.  A Hybrid Cold Gas Microthruster System for Spacecraft , 2002 .