Reasoning about probabilistic sequential programs in a probabilistic logic

Abstract. We introduce a notion of strong monotonicity of probabilistic predicate transformers. This notion enables us to establish a normal form theorem for monotone probabilistic predicate transformers. Three other healthiness conditions, namely, conjunctivity, disjunctivity and continuity for probabilistic predicate transformers are also examined, and they are linked to strong monotonicity. A notion of probabilistic refinement index is proposed, and it provides us with a continuous strength spectrum of refinement relations which may be used to describe more flexible refinement between probabilistic programs. A notion of probabilistic correctness is introduced too. We give a probabilistic weakest-precondition, choice and game semantics to the contract language, and present a probabilistic generalization of the winning strategy theorem.

[1]  Rupak Majumdar,et al.  Quantitative solution of omega-regular games , 2004, J. Comput. Syst. Sci..

[2]  Mingsheng Ying Bisimulation indexes and their applications , 2002, Theor. Comput. Sci..

[3]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[4]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[5]  David Monniaux,et al.  Abstract Interpretation of Probabilistic Semantics , 2000, SAS.

[6]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[7]  P. Panangaden Probabilistic Relations , 1998 .

[8]  Annabelle McIver,et al.  Demonic, angelic and unbounded probabilistic choices in sequential programs , 2001, Acta Informatica.

[9]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[10]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[11]  T. E. S. Raghavan,et al.  Algorithms for stochastic games — A survey , 1991, ZOR Methods Model. Oper. Res..

[12]  Edsger W. Dijkstra,et al.  Structured programming , 1972, A.P.I.C. Studies in data processing.

[13]  Dexter Kozen,et al.  A probabilistic PDL , 1983, J. Comput. Syst. Sci..

[14]  Carroll Morgan,et al.  Programming from specifications , 1990, Prentice Hall International Series in computer science.

[15]  Martin Wirsing,et al.  Approximate Bisimilarity , 2000, AMAST.

[16]  Jan A. Bergstra,et al.  Axiomatizing Probabilistic Processes: ACP with Generative Probabilities , 1995, Inf. Comput..

[17]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[18]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[19]  Mingsheng Ying,et al.  Additive models of probabilistic processes , 2002, Theor. Comput. Sci..

[20]  Mingsheng Ying Topology in process calculus - approximate correctness and infinite evolution of concurrent programs , 2001 .

[21]  Ernst-Erich Doberkat,et al.  The Demonic Product of Probabilistic Relations , 2002, FoSSaCS.

[22]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[23]  Karen Seidel,et al.  Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..

[24]  James Worrell,et al.  An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.

[25]  Ralph-Johan Back,et al.  Duality in specification languages: a lattice-theoretical approach , 1990, Acta Informatica.

[26]  Nils J. Nilsson,et al.  Probabilistic Logic * , 2022 .

[27]  Annabelle McIver,et al.  Partial correctness for probabilistic demonic programs , 2001, Theor. Comput. Sci..

[28]  A. McIver,et al.  Games , probability and the quantitative μ-calculus , 2002 .

[29]  Edsger W. Dijkstra,et al.  Notes on structured programming , 1970 .

[30]  Jean-Yves Béziau,et al.  What is many-valued logic? , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.

[31]  Ralph-Johan Back,et al.  Refinement Calculus: A Systematic Introduction , 1998 .

[32]  Annabelle McIver,et al.  Probabilistic Models for the Guarded Command Language , 1997, Sci. Comput. Program..

[33]  James Worrell,et al.  Towards Quantitative Verification of Probabilistic Transition Systems , 2001, ICALP.

[34]  David Monniaux An Abstract Analysis of the Probabilistic Termination of Programs , 2001, SAS.

[35]  Ernst-Erich Doberkat The Converse of a Probabilistic Relation , 2002 .

[36]  Annabelle McIver,et al.  Probabilistic predicate transformers , 1996, TOPL.

[37]  Wim H. Hesselink,et al.  Command algebras, recursion and program transformation , 1990, Formal Aspects of Computing.

[38]  Dexter Kozen,et al.  Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[39]  Ralph-Johan Back,et al.  A Lattice-theoretical Basis for a Specification Language , 1989, MPC.

[40]  Joakim von Wright The lattice of data refinement , 2005, Acta Informatica.

[41]  P. Panangaden,et al.  Nuclear and trace ideals in tensored-categories , 1998, math/9805102.

[42]  Niklaus Wirth,et al.  Program development by stepwise refinement , 1971, CACM.

[43]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[44]  H. Jeffreys Logical Foundations of Probability , 1952, Nature.