Reasoning about probabilistic sequential programs in a probabilistic logic
暂无分享,去创建一个
[1] Rupak Majumdar,et al. Quantitative solution of omega-regular games , 2004, J. Comput. Syst. Sci..
[2] Mingsheng Ying. Bisimulation indexes and their applications , 2002, Theor. Comput. Sci..
[3] Gordon D. Plotkin,et al. A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..
[4] Robin Milner,et al. Communication and concurrency , 1989, PHI Series in computer science.
[5] David Monniaux,et al. Abstract Interpretation of Probabilistic Semantics , 2000, SAS.
[6] Joseph Y. Halpern. An Analysis of First-Order Logics of Probability , 1989, IJCAI.
[7] P. Panangaden. Probabilistic Relations , 1998 .
[8] Annabelle McIver,et al. Demonic, angelic and unbounded probabilistic choices in sequential programs , 2001, Acta Informatica.
[9] Edsger W. Dijkstra,et al. A Discipline of Programming , 1976 .
[10] L. Shapley,et al. Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.
[11] T. E. S. Raghavan,et al. Algorithms for stochastic games — A survey , 1991, ZOR Methods Model. Oper. Res..
[12] Edsger W. Dijkstra,et al. Structured programming , 1972, A.P.I.C. Studies in data processing.
[13] Dexter Kozen,et al. A probabilistic PDL , 1983, J. Comput. Syst. Sci..
[14] Carroll Morgan,et al. Programming from specifications , 1990, Prentice Hall International Series in computer science.
[15] Martin Wirsing,et al. Approximate Bisimilarity , 2000, AMAST.
[16] Jan A. Bergstra,et al. Axiomatizing Probabilistic Processes: ACP with Generative Probabilities , 1995, Inf. Comput..
[17] Patrick Cousot,et al. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.
[18] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[19] Mingsheng Ying,et al. Additive models of probabilistic processes , 2002, Theor. Comput. Sci..
[20] Mingsheng Ying. Topology in process calculus - approximate correctness and infinite evolution of concurrent programs , 2001 .
[21] Ernst-Erich Doberkat,et al. The Demonic Product of Probabilistic Relations , 2002, FoSSaCS.
[22] Judea Pearl,et al. Probabilistic reasoning in intelligent systems , 1988 .
[23] Karen Seidel,et al. Probabilistic Communicating Processes , 1992, Theor. Comput. Sci..
[24] James Worrell,et al. An Algorithm for Quantitative Verification of Probabilistic Transition Systems , 2001, CONCUR.
[25] Ralph-Johan Back,et al. Duality in specification languages: a lattice-theoretical approach , 1990, Acta Informatica.
[26] Nils J. Nilsson,et al. Probabilistic Logic * , 2022 .
[27] Annabelle McIver,et al. Partial correctness for probabilistic demonic programs , 2001, Theor. Comput. Sci..
[28] A. McIver,et al. Games , probability and the quantitative μ-calculus , 2002 .
[29] Edsger W. Dijkstra,et al. Notes on structured programming , 1970 .
[30] Jean-Yves Béziau,et al. What is many-valued logic? , 1997, Proceedings 1997 27th International Symposium on Multiple- Valued Logic.
[31] Ralph-Johan Back,et al. Refinement Calculus: A Systematic Introduction , 1998 .
[32] Annabelle McIver,et al. Probabilistic Models for the Guarded Command Language , 1997, Sci. Comput. Program..
[33] James Worrell,et al. Towards Quantitative Verification of Probabilistic Transition Systems , 2001, ICALP.
[34] David Monniaux. An Abstract Analysis of the Probabilistic Termination of Programs , 2001, SAS.
[35] Ernst-Erich Doberkat. The Converse of a Probabilistic Relation , 2002 .
[36] Annabelle McIver,et al. Probabilistic predicate transformers , 1996, TOPL.
[37] Wim H. Hesselink,et al. Command algebras, recursion and program transformation , 1990, Formal Aspects of Computing.
[38] Dexter Kozen,et al. Semantics of probabilistic programs , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[39] Ralph-Johan Back,et al. A Lattice-theoretical Basis for a Specification Language , 1989, MPC.
[40] Joakim von Wright. The lattice of data refinement , 2005, Acta Informatica.
[41] P. Panangaden,et al. Nuclear and trace ideals in tensored-categories , 1998, math/9805102.
[42] Niklaus Wirth,et al. Program development by stepwise refinement , 1971, CACM.
[43] Jan A. Bergstra,et al. Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..
[44] H. Jeffreys. Logical Foundations of Probability , 1952, Nature.