The continuum random tree is the scaling limit of unlabeled unrooted trees

We prove that the uniform unlabelled unrooted tree with n vertices and vertex degrees in a fixed set converges in the Gromov-Hausdorff sense after a suitable rescaling to the Brownian continuum random tree. This proves a conjecture by Aldous. Moreover, we establish Benjamini-Schramm convergence of this model of random trees.

[1]  Asaf Nachmias,et al.  Recurrence of planar graph limits , 2012, 1206.0707.

[2]  George Szekeres,et al.  Distribution of labelled trees by diameter , 1983 .

[3]  C. Abraham,et al.  Excursion theory for Brownian motion indexed by the Brownian tree , 2015, Journal of the European Mathematical Society.

[4]  Jérémie Bettinelli Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.

[5]  J. L. Gall,et al.  Random trees and applications , 2005 .

[6]  B'en'edicte Haas,et al.  Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.

[7]  Konstantinos Panagiotou,et al.  Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.

[8]  Omer Angel,et al.  Uniform Infinite Planar Triangulations , 2002 .

[9]  Agelos Georgakopoulos,et al.  Limits of subcritical random graphs and random graphs with excluded minors , 2015, 1512.03572.

[10]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[11]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[12]  D. P. Kennedy,et al.  The Galton-Watson process conditioned on the total progeny , 1975, Journal of Applied Probability.

[13]  L. Addario-Berry,et al.  The continuum limit of critical random graphs , 2009, 0903.4730.

[14]  Philippe Flajolet,et al.  The distribution of height and diameter in random non‐plane binary trees , 2010, Random Struct. Algorithms.

[15]  J. L. Gall,et al.  Scaling limits of random trees and planar maps , 2011, 1101.4856.

[16]  Bridget Eileen Tenner,et al.  Parabolic Double Cosets in Coxeter Groups , 2016, Electron. J. Comb..

[17]  Manuel Bodirsky,et al.  Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..

[18]  Alessandra Caraceni The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.

[19]  Guy Louchard,et al.  Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.

[20]  P. Flajolet,et al.  Boltzmann Sampling of Unlabelled Structures , 2006 .

[21]  Jim Pitman,et al.  Tree-valued Markov chains derived from Galton-Watson processes , 1998 .

[22]  Michael Drmota,et al.  The shape of unlabeled rooted random trees , 2010, Eur. J. Comb..

[23]  Stanley Burris,et al.  Counting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2 , 2006, Electron. J. Comb..

[24]  K. Panagiotou,et al.  Scaling limits of random Pólya trees , 2015, 1502.07180.

[25]  D. Burago,et al.  A Course in Metric Geometry , 2001 .

[26]  J. Marckert,et al.  Some families of increasing planar maps , 2007, 0712.0593.

[27]  R. Otter The Number of Trees , 1948 .

[28]  Benedikt Stufler,et al.  Asymptotic Properties of Random Unlabelled Block-Weighted Graphs , 2017, Electron. J. Comb..

[29]  Svante Janson,et al.  Sub-Gaussian tail bounds for the width and height of conditioned Galton--Watson trees , 2010, 1011.4121.

[30]  Gilbert Labelle,et al.  Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.

[31]  Sigurdur Orn Stef'ansson,et al.  Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.

[32]  P. Flajolet,et al.  The height of random binary unlabelled trees , 2008, 0807.2365.

[33]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[34]  Nicolas Curien,et al.  The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.

[35]  J. Bell,et al.  Counting Rooted Trees: The Universal Law $t(n)\,\sim\,C \rho^{-n} n^{-3/2}$ , 2006 .

[36]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[37]  Svante Janson,et al.  Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.

[38]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[39]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[40]  Benedikt Stufler Random Enriched Trees with Applications to Random Graphs , 2018, Electron. J. Comb..

[41]  HEIGHT AND DIAMETER OF BROWNIAN TREE , 2015, 1503.05014.

[42]  David Aldous,et al.  Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .

[43]  M. Drmota Random Trees: An Interplay between Combinatorics and Probability , 2009 .

[44]  Sophie P'enisson Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process , 2014, 1412.3322.

[45]  A. Joyal Une théorie combinatoire des séries formelles , 1981 .

[46]  Andrew D. Barbour,et al.  Random combinatorial structures: the convergent case , 2005, J. Comb. Theory, Ser. A.

[47]  Guy Louchard,et al.  Random Sampling from Boltzmann Principles , 2002, ICALP.

[48]  Jean-François Marckert,et al.  The CRT is the scaling limit of unordered binary trees , 2009, Random Struct. Algorithms.