The continuum random tree is the scaling limit of unlabeled unrooted trees
暂无分享,去创建一个
[1] Asaf Nachmias,et al. Recurrence of planar graph limits , 2012, 1206.0707.
[2] George Szekeres,et al. Distribution of labelled trees by diameter , 1983 .
[3] C. Abraham,et al. Excursion theory for Brownian motion indexed by the Brownian tree , 2015, Journal of the European Mathematical Society.
[4] Jérémie Bettinelli. Scaling Limit of Random Planar Quadrangulations with a Boundary , 2011, 1111.7227.
[5] J. L. Gall,et al. Random trees and applications , 2005 .
[6] B'en'edicte Haas,et al. Scaling limits of Markov branching trees with applications to Galton–Watson and random unordered trees , 2010, 1003.3632.
[7] Konstantinos Panagiotou,et al. Scaling Limits of Random Graphs from Subcritical Classes , 2014, 1411.1865.
[8] Omer Angel,et al. Uniform Infinite Planar Triangulations , 2002 .
[9] Agelos Georgakopoulos,et al. Limits of subcritical random graphs and random graphs with excluded minors , 2015, 1512.03572.
[10] G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .
[11] David Aldous,et al. The Continuum Random Tree III , 1991 .
[12] D. P. Kennedy,et al. The Galton-Watson process conditioned on the total progeny , 1975, Journal of Applied Probability.
[13] L. Addario-Berry,et al. The continuum limit of critical random graphs , 2009, 0903.4730.
[14] Philippe Flajolet,et al. The distribution of height and diameter in random non‐plane binary trees , 2010, Random Struct. Algorithms.
[15] J. L. Gall,et al. Scaling limits of random trees and planar maps , 2011, 1101.4856.
[16] Bridget Eileen Tenner,et al. Parabolic Double Cosets in Coxeter Groups , 2016, Electron. J. Comb..
[17] Manuel Bodirsky,et al. Boltzmann Samplers, Pólya Theory, and Cycle Pointing , 2010, SIAM J. Comput..
[18] Alessandra Caraceni. The Scaling Limit of Random Outerplanar Maps , 2014, 1405.1971.
[19] Guy Louchard,et al. Boltzmann Samplers for the Random Generation of Combinatorial Structures , 2004, Combinatorics, Probability and Computing.
[20] P. Flajolet,et al. Boltzmann Sampling of Unlabelled Structures , 2006 .
[21] Jim Pitman,et al. Tree-valued Markov chains derived from Galton-Watson processes , 1998 .
[22] Michael Drmota,et al. The shape of unlabeled rooted random trees , 2010, Eur. J. Comb..
[23] Stanley Burris,et al. Counting Rooted Trees: The Universal Law t(n)~C ρ-n n-3/2 , 2006, Electron. J. Comb..
[24] K. Panagiotou,et al. Scaling limits of random Pólya trees , 2015, 1502.07180.
[25] D. Burago,et al. A Course in Metric Geometry , 2001 .
[26] J. Marckert,et al. Some families of increasing planar maps , 2007, 0712.0593.
[27] R. Otter. The Number of Trees , 1948 .
[28] Benedikt Stufler,et al. Asymptotic Properties of Random Unlabelled Block-Weighted Graphs , 2017, Electron. J. Comb..
[29] Svante Janson,et al. Sub-Gaussian tail bounds for the width and height of conditioned Galton--Watson trees , 2010, 1011.4121.
[30] Gilbert Labelle,et al. Combinatorial species and tree-like structures , 1997, Encyclopedia of mathematics and its applications.
[31] Sigurdur Orn Stef'ansson,et al. Scaling limits of random planar maps with a unique large face , 2012, 1212.5072.
[32] P. Flajolet,et al. The height of random binary unlabelled trees , 2008, 0807.2365.
[33] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[34] Nicolas Curien,et al. The CRT is the scaling limit of random dissections , 2013, Random Struct. Algorithms.
[35] J. Bell,et al. Counting Rooted Trees: The Universal Law $t(n)\,\sim\,C \rho^{-n} n^{-3/2}$ , 2006 .
[36] I. Benjamini,et al. Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.
[37] Svante Janson,et al. Simply generated trees, conditioned Galton–Watson trees, random allocations and condensation , 2011, 1112.0510.
[38] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[39] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[40] Benedikt Stufler. Random Enriched Trees with Applications to Random Graphs , 2018, Electron. J. Comb..
[41] HEIGHT AND DIAMETER OF BROWNIAN TREE , 2015, 1503.05014.
[42] David Aldous,et al. Asymptotic Fringe Distributions for General Families of Random Trees , 1991 .
[43] M. Drmota. Random Trees: An Interplay between Combinatorics and Probability , 2009 .
[44] Sophie P'enisson. Beyond the Q-process: various ways of conditioning the multitype Galton-Watson process , 2014, 1412.3322.
[45] A. Joyal. Une théorie combinatoire des séries formelles , 1981 .
[46] Andrew D. Barbour,et al. Random combinatorial structures: the convergent case , 2005, J. Comb. Theory, Ser. A.
[47] Guy Louchard,et al. Random Sampling from Boltzmann Principles , 2002, ICALP.
[48] Jean-François Marckert,et al. The CRT is the scaling limit of unordered binary trees , 2009, Random Struct. Algorithms.