Controlling the Relative Areas of Photocathodic and Photoanodic Terraces on the SrTiO3(111) Surface

SrTiO3(111) surfaces have been heated in air at 1250 °C, either alone or with reservoirs of TiO2 and SrTiO3 powders. The surface structure and properties were measured by atomic force microscopy, scanning Kelvin probe microscopy, X-ray photoelectron spectroscopy (XPS), and photochemical marker reactions that leave solid products on the surface at the site of the photochemical reaction. All of the surfaces are made up of atomically flat terraces of two distinguishable types. One terrace has a relatively higher surface potential and promotes the photochemical reduction of Ag+. The other terrace has a relatively lower positive potential and promotes the photochemical oxidation of Pb2+. XPS measurements show that the concentration of titanium at the surface increases with the fraction of TiO2 in the powder reservoir during annealing, and marker reactions show the fraction of terraces that promote oxidation increases with the titanium content. The fractional area of terraces that promote oxidation was controll...

[1]  G. Rohrer,et al.  Structure Se nsitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces , 2003 .

[2]  G. Rohrer,et al.  ANISOTROPIC PHOTOCHEMICAL REACTIVITY OF BULK TIO2 CRYSTALS , 1998 .

[3]  D. Blank,et al.  Epitaxial oxide growth on polar (111) surfaces , 2011 .

[4]  Bruce A. Parkinson,et al.  Recent developments in solar water-splitting photocatalysis , 2011 .

[5]  Paul A. Salvador,et al.  Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures , 2011 .

[6]  G. Rohrer,et al.  Computational Model of Domain-Specific Reactivity on Coated Ferroelectric Photocatalysts , 2016 .

[7]  R. Takahashi,et al.  Effect of Polar (111)-Oriented SrTiO3 on Initial Perovskite Growth , 2016 .

[8]  P. Nagarkar,et al.  Effect of surface treatment on SrTiO3: An x‐ray photoelectron spectroscopic study , 1991 .

[9]  L. Marks,et al.  Time, temperature, and oxygen partial pressure-dependent surface reconstructions on SrTiO3(1 1 1): A systematic study of oxygen-rich conditions , 2008 .

[10]  M. Batzill Fundamental aspects of surface engineering of transition metal oxide photocatalysts , 2011 .

[11]  S. Ismail-Beigi,et al.  Ferroelectric-Based Catalysis: Switchable Surface Chemistry , 2015 .

[12]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[13]  Leo Brewer,et al.  High‐Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg , 1987 .

[14]  T. Hanada,et al.  Structure and electronic state of the TiO2 and SrO terminated SrTiO3(100) surfaces , 1993 .

[15]  Steve Dunn,et al.  Photochemical growth of silver nanoparticles on c(-) and c(+) domains on lead zirconate titanate thin films. , 2007, Journal of the American Chemical Society.

[16]  G. Rohrer,et al.  The orientation dependence of the photochemical reactivity of BiVO4 , 2015 .

[17]  Frances A. Houle,et al.  Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting , 2014 .

[18]  G. Somorjai,et al.  UPS and XPS studies of the chemisorption of O2, H2 AND H2O on reduced and stoichiometric SrTiO3(111) surfaces; The effects of illumination , 1980 .

[19]  Sang-Koog Kim,et al.  Atomically flat single-terminated SrTiO3 (111) surface , 2008 .

[20]  G. Rohrer,et al.  Polar Domains at the Surface of Centrosymmetric BiVO4 , 2014 .

[21]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[22]  R. Ramesh,et al.  Universal Ti-rich termination of atomically flat SrTiO3 (001), (110), and (111) surfaces , 2011 .

[23]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[24]  G. Rohrer,et al.  Surface engineering along the close-packed direction of SrTiO3 , 2001 .

[25]  G. Rohrer,et al.  The Orientation Dependence of the Photochemical Activity of α‐Fe2O3 , 2016 .

[26]  G. Rohrer,et al.  Photocatalysts with internal electric fields. , 2014, Nanoscale.

[27]  G. Rohrer,et al.  Ferroelastic domains improve photochemical reactivity: a comparative study of monoclinic and tetragonal (Bi1−0.5xNa0.5x)(V1−xMox)O4 ceramics , 2016 .

[28]  Frank E. Osterloh,et al.  Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. , 2013, Chemical Society reviews.

[29]  Kehui Wu,et al.  Evolution of the surface structures on SrTiO3(110) tuned by Ti or Sr concentration , 2010, 1012.1941.

[30]  K. Harada,et al.  Photocatalytic deposition of metal ions onto TiO2 powder , 1986 .

[31]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Influence of Titania Phase and Orientation , 2010 .

[32]  Frank E. Osterloh,et al.  Nanoscale strontium titanate photocatalysts for overall water splitting. , 2012, ACS nano.

[33]  F. Finocchi,et al.  Polarity on the SrTiO3 (111) and (110) surfaces , 1999 .

[34]  M. R. Castell,et al.  Surface of Sputtered and Annealed Polar SrTiO3(111): TiOx-Rich (n × n) Reconstructions , 2008 .

[35]  Yiling Zhang,et al.  Effect of crystal and domain orientation on the visible-light photochemical reduction of Ag on BiFeO₃. , 2011, ACS applied materials & interfaces.

[36]  Can Li,et al.  Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4 , 2013, Nature Communications.

[37]  G. Rohrer,et al.  Heterostructured Ceramic Powders for Photocatalytic Hydrogen Production: Nanostructured TiO2 Shells Surrounding Microcrystalline (Ba,Sr)TiO3 Cores , 2012 .

[38]  Yiling Zhang,et al.  Visible light photochemical activity of heterostructured PbTiO3–TiO2 core–shell particles , 2012 .

[39]  R. Naidu,et al.  Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: A review , 2009 .

[40]  The small unit cell reconstructions of SrTiO3(1 1 1) , 2009, 0901.3550.

[41]  Michikazu Hara,et al.  Heterogeneous photocatalytic cleavage of water , 2010 .

[42]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity , 2010 .