Optimal control of an industrial electrostatic rotating electrode separator using artificial intelligence technics

The main purpose of this study is the multicriterion optimization in a dynamic context of the operation of an industrial electrostatic separation process with rotating electrode. A study of the operation of this process, performed by using an artificial neural network (ANN), has shown the complexity of adjusting the control variables for use in the industrial field. In this context, a multifactorial control approach has been proposed using meta-heuristics based on artificial intelligence. Streszczenie. W artykule zaprezentowano multikryterialną optymalizację przemysłowego separatora elektrostatycznego z ruchomymi elektrodami. Do optymalizacji wykorzystano sztuczne sieci neuronowe. Optymalne sterowanie przemysłowym separatorem elektrostatycznym z ruchomymi elektrodami.

[1]  L. Dascalescu,et al.  Electrostatic separation processes , 2004, IEEE Industry Applications Magazine.

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Carl G. Looney,et al.  Advances in Feedforward Neural Networks: Demystifying Knowledge Acquiring Black Boxes , 1996, IEEE Trans. Knowl. Data Eng..

[4]  Lucian Dascalescu,et al.  Application of Genetic Algorithms to the Optimization of a Roll-Type Electrostatic Separation Process , 2010, 2010 IEEE Industry Applications Society Annual Meeting.

[6]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[7]  L. Dascalescu,et al.  Fuzzy Control of an Electrostatic Separation Process , 2008, IEEE Transactions on Industry Applications.

[8]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[9]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[10]  Amar Tilmatine,et al.  Electrostatic separators of particles: Application to plastic/metal, metal/metal and plastic/plastic mixtures. , 2009, Waste management.

[11]  L. Dascalescu,et al.  Set point identification and robustness testing of electrostatic separation processes , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[12]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[13]  Lucian Dascalescu,et al.  Modeling and Optimization of a Roll-Type Electrostatic Separation Process Using Artificial Neural Networks , 2013, IEEE Transactions on Industry Applications.

[14]  Doreen Eichel,et al.  Learning And Soft Computing Support Vector Machines Neural Networks And Fuzzy Logic Models , 2016 .

[15]  Marco Dorigo,et al.  Ant colony optimization theory: A survey , 2005, Theor. Comput. Sci..

[16]  Mostafa Zandieh,et al.  A new biogeography-based optimization (BBO) algorithm for the flexible job shop scheduling problem , 2012 .

[17]  Peh Chiong Teh,et al.  Modeling Electrostatic Separation Process Using Artificial Neural Network (ANN) , 2016 .

[18]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .