On an Initial Transient Deletion Rule with Rigorous Theoretical Support

We study an initial transient deletion rule proposed by Glynn and Iglehart. We argue that it has desirable properties both from a theoretical and practical standpoint; we discuss its bias reducing properties, and its use both in the single replication setting and in the multiple replications/parallel processing context

[1]  D. Aldous Meeting times for independent Markov chains , 1991 .

[2]  Emily Roth,et al.  A relaxation time approach for reducing initialization bias in simulation , 1985, ANSS '85.

[3]  James R. Wilson,et al.  Evaluation of startup policies in simulation experiments , 1978 .

[4]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[5]  Catherine M. Harmonosky,et al.  A comparison of selective initialization bias elimination methods , 2002, Proceedings of the Winter Simulation Conference.

[6]  James R. Wilson,et al.  A survey of research on the simulation startup problem , 1978 .

[7]  Donald L. Iglehart,et al.  A new initial bias deletion rule , 1987, WSC '87.

[8]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[9]  P. Glynn Some asymptotic formulas for markov chains with applications to simulation , 1984 .

[10]  George Vassilacopoulos Testing for initialization bias in simulation output , 1989, Simul..

[11]  J. A. Fill Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .

[12]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[13]  Stewart Robinson,et al.  A statistical process control approach for estimating the warm-up period , 2002, Proceedings of the Winter Simulation Conference.

[14]  Barry L. Nelson,et al.  Statistical Analysis of Simulation Results , 2007 .

[15]  J. Rosenthal RATES OF CONVERGENCE FOR GIBBS SAMPLING FOR VARIANCE COMPONENT MODELS , 1995 .

[16]  Krzysztof Pawlikowski,et al.  Steady-state simulation of queueing processes: survey of problems and solutions , 1990, CSUR.

[17]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[18]  E. Yucesan,et al.  A statistical process control approach for estimating the warm-up period , 2002 .

[19]  Lee W. Schruben,et al.  Optimal Tests for Initialization Bias in Simulation Output , 1983, Oper. Res..

[20]  Philip Heidelberger,et al.  Analysis of initial transient deletion for replicated steady-state simulations , 1991, Oper. Res. Lett..

[21]  O. Kitao,et al.  I: METHODOLOGY , 2003, Deception: Counterdeception and Counterintelligence.

[22]  Richard W. Conway,et al.  Some Tactical Problems in Digital Simulation , 1963 .

[23]  George S. Fishman,et al.  Estimating Sample Size in Computing Simulation Experiments , 1971 .

[24]  Paul T. Jackway,et al.  A Methodology for Initialisation Bias Reduction in Computer Simulation Output , 1992 .

[25]  Stewart Robinson A statistical process control approach for estimating the warm-up period , 2002, Proceedings of the Winter Simulation Conference.

[26]  S. Meyn,et al.  Computable Bounds for Geometric Convergence Rates of Markov Chains , 1994 .

[27]  J. Rosenthal Minorization Conditions and Convergence Rates for Markov Chain Monte Carlo , 1995 .

[28]  C. J. Ancker,et al.  Evaluation of commonly used rules for detecting “steady state” in computer simulation , 1978 .

[29]  Yann Richet,et al.  Automated Suppression of the Initial Transient in Monte Carlo Calculations based on Stationarity Detection using the Brownian Bridge Theory , 2003 .

[30]  Jeffrey S. Rosenthal,et al.  Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .

[31]  P. Diaconis,et al.  SHUFFLING CARDS AND STOPPING-TIMES , 1986 .

[32]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[33]  Christian P. Robert,et al.  MCMC Convergence Diagnostics : A « Reviewww » , 1998 .