Sequential ideal-observer analysis of visual discriminations.

Visual stimuli contain a limited amount of information that could potentially be used to perform a given visual task. At successive stages of visual processing, some of this information is lost and some is transmitted to higher stages. This article describes a new analysis, based on the concept of the ideal observer in signal detection theory, that allows one to trace the flow of discrimination information through the initial physiological stages of visual processing, for arbitrary spatio-chromatic stimuli. This ideal-observer analysis provides a rigorous means of measuring the information content of visual stimuli and of assessing the contribution of specific physiological mechanisms to discrimination performance. Here, the analysis is developed for the physiological mechanisms up to the level of the photoreceptor. It is shown that many psychophysical phenomena previously attributed to neural mechanisms may be explained by variations in the information content of the stimuli and by preneural mechanisms.

[1]  W. Stiles The scattering theory of the effect of glare on the brightness difference threshold , 1929 .

[2]  W. W. Wilcox,et al.  VISUAL ACUITY AND ITS PHYSIOLOGICAL BASIS , 1933 .

[3]  W. D. Wright,et al.  Hue-discrimination in normal colour-vision , 1934 .

[4]  W. Stiles,et al.  Luminous Efficiency of Rays entering the Eye Pupil at Different Points , 1937, Nature.

[5]  A. Rose,et al.  The Relative Sensitivities of Television Pickup Tubes, Photographic Film, and the Human Eye , 1942, Proceedings of the IRE.

[6]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[7]  G. M. Byram THE PHYSICAL AND PHOTOCHEMICAL BASIS OF VISUAL RESOLVING POWER , 1944 .

[8]  George M. Byram,et al.  The Physical and Photochemical Basis of Visual Resolving PowerPart II. Visual Acuity and the Photochemistry of the Retina , 1944 .

[9]  Meredith W. Morgan,et al.  ACCOMMODATION AND ITS RELATIONSHIP TO CONVERGENCE , 1944 .

[10]  S HECHT,et al.  Size, shape, and contrast in detection of targets by daylight vision; data and analytical description. , 1947, Journal of the Optical Society of America.

[11]  G. Wald,et al.  The change in refractive power of the human eye in dim and bright light. , 1947, Journal of the Optical Society of America.

[12]  A. Rose The sensitivity performance of the human eye on an absolute scale. , 1948, Journal of the Optical Society of America.

[13]  K H Spring,et al.  VARIATION OF PUPIL SIZE WITH CHANGE IN THE ANGLE AT WHICH THE LIGHT STIMULUS STRIKES THE RETINA* , 1948, The British journal of ophthalmology.

[14]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[15]  J W GEBHARD,et al.  Pupil size as determined by adapting luminance. , 1952, Journal of the Optical Society of America.

[16]  R. W. DITCHBURN,et al.  Vision with a Stabilized Retinal Image , 1952, Nature.

[17]  L. Riggs,et al.  The disappearance of steadily fixated visual test objects. , 1953, Journal of the Optical Society of America.

[18]  E. Ludvigh Direction sense of the eye. , 1953, American journal of ophthalmology.

[19]  W. W. Peterson,et al.  The theory of signal detectability , 1954, Trans. IRE Prof. Group Inf. Theory.

[20]  David Middleton,et al.  Modern statistical approaches to reception in communication theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[21]  H. Barlow Retinal noise and absolute threshold. , 1956, Journal of the Optical Society of America.

[22]  G. Heath,et al.  The influence of visual acuity on accommodative responses of the eye. , 1956, American journal of optometry and archives of American Academy of Optometry.

[23]  Richard L. Sidman,et al.  THE STRUCTURE AND CONCENTRATION OF SOLIDS IN PHOTORECEPTOR CELLS STUDIED BY REFRACTOMETRY AND INTERFERENCE MICROSCOPY , 1957, The Journal of biophysical and biochemical cytology.

[24]  G. Wyszecki,et al.  Axial chromatic aberration of the human eye. , 1957, Journal of the Optical Society of America.

[25]  H B BARLOW,et al.  Increment thresholds at low intensities considered as signal/noise discriminations , 1957, The Journal of physiology.

[26]  J. Lebensohn Light, Colour, and Vision , 1958 .

[27]  H. Barlow Temporal and spatial summation in human vision at different background intensities , 1958, The Journal of physiology.

[28]  G. Wyszecki,et al.  Wavelength discrimination for point sources. , 1958, Journal of the Optical Society of America.

[29]  G. Westheimer,et al.  Fluctuations of accommodation under steady viewing conditions , 1959, The Journal of physiology.

[30]  J NACHMIAS,et al.  Two-dimensional motion of the retinal image during monocular fixation. , 1959, Journal of the Optical Society of America.

[31]  G. Brindley Physiology of the Retina and the Visual Pathway , 1960 .

[32]  G WESTHEIMER,et al.  Modulation thresholds for sinusoidal light distributions on the retina , 1960, The Journal of physiology.

[33]  S. A. Talbot Physiology of the retina and the visual pathway , 1961 .

[34]  W. Stiles,et al.  The colour change of monochromatic light with retinal angle of incidence. , 1961, The Optometric weekly.

[35]  W. P. Tanner PHYSIOLOGICAL IMPLICATIONS OF PSYCHOPHYSICAL DATA * , 1961, Annals of the New York Academy of Sciences.

[36]  H B Barlow,et al.  Measurements of the quantum efficiency of discrimination in human scotopic vision , 1962, The Journal of physiology.

[37]  G. Westheimer,et al.  Light distribution in the image formed by the living human eye. , 1962, Journal of the Optical Society of America.

[38]  J J VOS CONTRIBUTION OF THE FUNDUS OCULI TO ENTOPTIC SCATTER. , 1963, Journal of the Optical Society of America.

[39]  H R BLACKWELL,et al.  Neural theories of simple visual discriminations. , 1963, Journal of the Optical Society of America.

[40]  Carl W. Helstrom,et al.  The detection and resolution of optical signals , 1964, IEEE Trans. Inf. Theory.

[41]  G. Wald,et al.  Visual Pigments in Single Rods and Cones of the Human Retina , 1964, Science.

[42]  W. B. Marks,et al.  Visual Pigments of Single Primate Cones , 1964, Science.

[43]  R. L. Valois Analysis and coding of color vision in the primate visual system. , 1965 .

[44]  R. Steinman Effect of Target Size, Luminance, and Color on Monocular Fixation* , 1965 .

[45]  D. G. Green,et al.  Optical and retinal factors affecting visual resolution. , 1965, The Journal of physiology.

[46]  R. L. de Valois,et al.  Analysis and coding of color vision in the primate visual system. , 1965, Cold Spring Harbor symposia on quantitative biology.

[47]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[48]  W. Rushton,et al.  Glare: its measurement by cone thresholds and by the bleaching of cone pigments. , 1966, Journal of the Optical Society of America.

[49]  F. Campbell,et al.  Optical quality of the human eye , 1966, The Journal of physiology.

[50]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[51]  G. Westheimer Dependence of the magnitude of the Stiles—Crawford effect on retinal location , 1967, The Journal of physiology.

[52]  G. Westheimer Spatial interaction in human cone vision , 1967, The Journal of physiology.

[53]  M. A. Bouman,et al.  Spatial Modulation Transfer in the Human Eye , 1967 .

[54]  J. Goodman Introduction to Fourier optics , 1969 .

[55]  B. Leshowitz,et al.  Visual detection of signals in the presence of continuous and pulsed backqrounds , 1968 .

[56]  E Yamada,et al.  Some structural features of the fovea centralis in the human retina. , 1969, Archives of ophthalmology.

[57]  J D Rattle,et al.  Effect of target size on monocular fixation. , 1969, Optica acta.

[58]  B. Boycott,et al.  Organization of the Primate Retina: Light Microscopy , 1969 .

[59]  J. Nachmias,et al.  Visual detection and discrimination of luminance increments. , 1970, Journal of the Optical Society of America.

[60]  F Rempt,et al.  Peripheral retinoscopy and the skiagram. , 1971, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[61]  J. Robson,et al.  Spatial-frequency channels in human vision. , 1971, Journal of the Optical Society of America.

[62]  D. Noton,et al.  Eye movements and visual perception. , 1971, Scientific American.

[63]  D. H. Kelly Adaptation effects on spatio-temporal sine-wave thresholds. , 1972, Vision research.

[64]  K. Oatley,et al.  Vernier acuity as affected by target length and separation , 1972 .

[65]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[66]  J. Pokorny,et al.  Spectral sensitivity of color-blind observers and the cone photopigments. , 1972, Vision research.

[67]  J M Enoch,et al.  Optical modulation by the isolated human fovea. , 1972, Vision research.

[68]  J. J. Vos,et al.  An analytical description of the line element in the zone-fluctuation model of colour vision. I. Basic concepts. , 1972, Vision research.

[69]  A. Snyder,et al.  The Stiles-Crawford effect--explanation and consequences. , 1973, Vision research.

[70]  D. P. Andrews,et al.  Acuities for spatial arrangement in line figures: human and ideal observers compared. , 1973, Vision research.

[71]  J. L. Brown Visual Sensitivity , 1974 .

[72]  P. Whittle,et al.  Luminance discrimination of separated flashes: the effect of background luminance and the shapes of T.V.I. curves. , 1974, Vision research.

[73]  R. L. de Valois,et al.  Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. , 1974, Vision research.

[74]  A. van Meeteren,et al.  Calculations on the Optical Modulation Transfer Function of the Human Eye for White Light , 1974 .

[75]  T. Cohn,et al.  Detectability of a luminance increment: effect of spatial uncertainty. , 1974, Journal of the Optical Society of America.

[76]  V. Dreyer,et al.  Visual acuity. , 1974, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[77]  P L Walraven,et al.  A closer look at the tritanopic convergence point. , 1974, Vision research.

[78]  J Nachmias,et al.  Letter: Grating contrast: discrimination may be better than detection. , 1974, Vision research.

[79]  D. Copenhagen,et al.  Control of Retinal Sensitivity II. Lateral Interactions at the Outer Plexiform Layer , 1974 .

[80]  J. Pokorny,et al.  Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm , 1975, Vision Research.

[81]  P. Gouras,et al.  Functional properties of ganglion cells of the rhesus monkey retina. , 1975, The Journal of physiology.

[82]  Gerald Westheimer,et al.  Temporal and spatial interference with vernier acuity , 1975, Vision Research.

[83]  Theodore E. Cohn,et al.  Quantum fluctuation limit in foveal vision , 1976, Vision Research.

[84]  Thomas L. Marzetta,et al.  Detection, Estimation, and Modulation Theory , 1976 .

[85]  W. Charman,et al.  Objective measurements of the longitudinal chromatic aberration of the human eye , 1976, Vision Research.

[86]  T. A. Reichert,et al.  The absence of a measurable “critical band” at low suprathreshold contrasts , 1976, Vision Research.

[87]  W. N. Charman,et al.  Dependence of accommodation response on the spatial frequency spectrum of the observed object , 1977, Vision Research.

[88]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[89]  Suzanne P. McKee,et al.  Integration regions for visual hyperacuity , 1977, Vision Research.

[90]  S. McKee,et al.  Spatial configurations for visual hyperacuity , 1977, Vision Research.

[91]  R. Marc,et al.  Chromatic organization of primate cones. , 1977, Science.

[92]  B. Howland,et al.  A subjective method for the measurement of monochromatic aberrations of the eye. , 1977, Journal of the Optical Society of America.

[93]  I. Rubin,et al.  Random point processes , 1977, Proceedings of the IEEE.

[94]  M. A. Bouman,et al.  Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a sensitivity controlling parameter. , 1978, Journal of the Optical Society of America.

[95]  C. Enroth-Cugell,et al.  Light distribution in the cat's retinal image , 1978, Vision Research.

[96]  R. Hess,et al.  The functional area for summation to threshold for sinusoidal gratings , 1978, Vision Research.

[97]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[98]  J. Robson,et al.  Grating summation in fovea and periphery , 1978, Vision Research.

[99]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[100]  J. Lythgoe,et al.  The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta. , 1978, The Journal of physiology.

[101]  H. Barlow The efficiency of detecting changes of density in random dot patterns , 1978, Vision Research.

[102]  H. B. Barlow,et al.  Reconstructing the visual image in space and time , 1979, Nature.

[103]  W. Geisler Evidence for the equivalent-background hypothesis in cones , 1979, Vision Research.

[104]  Oscar Estévez Uscanga,et al.  On the fundamental data-base of normal and dichromatic color vision , 1979 .

[105]  William H. Miller,et al.  Ocular Optical Filtering , 1979 .

[106]  R. Massof,et al.  Vector model for normal and dichromatic color vision. , 1980, Journal of the Optical Society of America.

[107]  S. McKee,et al.  Stereoscopic acuity with defocused and spatially filtered retinal images , 1980 .

[108]  D. Marr,et al.  An Information Processing Approach to Understanding the Visual Cortex , 1980 .

[109]  Ronald S. Harwerth,et al.  Psychophysical evidence for sustained and transient channels in the monkey visual system , 1980, Vision Research.

[110]  D. Borwein,et al.  The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones. , 1980, The American journal of anatomy.

[111]  J. M. Foley,et al.  Contrast masking in human vision. , 1980, Journal of the Optical Society of America.

[112]  R. F. Wagner,et al.  Efficiency of human visual signal discrimination. , 1981, Science.

[113]  J. M. Foley,et al.  Contrast detection and near-threshold discrimination in human vision , 1981, Vision Research.

[114]  H. Barlow Critical limiting factors in the design of the eye and visual cortex , 1981 .

[115]  G. Legge A power law for contrast discrimination , 1981, Vision Research.

[116]  J. Robson,et al.  Probability summation and regional variation in contrast sensitivity across the visual field , 1981, Vision Research.

[117]  A. Papoulis Linear systems, Fourier transforms, and optics , 1981, Proceedings of the IEEE.

[118]  H. Barlow,et al.  The statistical efficiency for detecting sinusoidal modulation of average dot density in random figures , 1981, Vision Research.

[119]  W. Charman,et al.  Off-axis image quality in the human eye , 1981, Vision Research.

[120]  David R. Williams,et al.  Punctate sensitivity of the blue-sensitive mechanism , 1981, Vision Research.

[121]  M C Teich,et al.  Multiplication noise in the human visual system at threshold. 3. The role of non-Poisson quantum fluctuations. , 1982, Biological cybernetics.

[122]  C. F. Stromeyer,et al.  Lateral interactions in the control of visual sensitivity , 1982, Vision Research.

[123]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[124]  A. Watson Summation of grating patches indicates many types of detector at one retinal location , 1982, Vision Research.

[125]  J Hirsch,et al.  Limits of spatial-frequency discrimination as evidence of neural interpolation. , 1982, Journal of the Optical Society of America.

[126]  J. Movshon,et al.  The statistical reliability of signals in single neurons in cat and monkey visual cortex , 1983, Vision Research.

[127]  C R Ingling,et al.  Simple-opponent receptive fields are asymmetrical: G-cone centers predominate. , 1983, Journal of the Optical Society of America.

[128]  H. B. Barlow,et al.  What does the eye see best? , 1983, Nature.

[129]  Andrew B. Watson,et al.  Detection and Recognition of Simple Spatial Forms , 1983 .

[130]  W. Geisler Mechanisms of visual sensitivity: Backgrounds and early dark adaptation , 1983, Vision Research.

[131]  J. Mollon,et al.  Human visual pigments: microspectrophotometric results from the eyes of seven persons , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[132]  Gary D. Bernard,et al.  Averaging over the foveal receptor aperture curtails aliasing , 1983, Vision Research.

[133]  H. Wilson,et al.  Spatial frequency tuning of orientation selective units estimated by oblique masking , 1983, Vision Research.

[134]  R. Watt,et al.  The recognition and representation of edge blur: Evidence for spatial primitives in human vision , 1983, Vision Research.

[135]  W N Charman,et al.  Objective technique for the determination of monochromatic aberrations of the human eye. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[136]  D. Kersten Spatial summation in visual noise , 1984, Vision Research.

[137]  D. Baylor,et al.  Spectral sensitivity of single cones in the retina of Macaca fascicularis , 1984, Nature.

[138]  W S Geisler,et al.  Physical limits of acuity and hyperacuity. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[139]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[140]  P. Lennie,et al.  Chromatic mechanisms in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[141]  J. Hirsch,et al.  Orientation dependence of visual hyperacuity contains a component with hexagonal symmetry. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[142]  John I. Yellott,et al.  Image sampling properties of photoreceptors: A reply to Miller and Bernard , 1984, Vision Research.

[143]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[144]  J. Vos Disability Glare A State of The Art Report , 1984 .

[145]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[146]  O. Braddick Visual hyperacuity. , 1984, Nature.

[147]  S. Schein,et al.  Density profile of blue-sensitive cones along the horizontal meridian of macaque retina. , 1985, Investigative ophthalmology & visual science.

[148]  R. Navarro,et al.  Accommodation-dependent model of the human eye with aspherics. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[149]  S. Klein,et al.  Hyperacuity thresholds of 1 sec: theoretical predictions and empirical validation. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[150]  T. R. J. Bossomaier,et al.  Irregularity and aliasing: Solution? , 1985, Vision Research.

[151]  E. Dubois,et al.  Digital picture processing , 1985, Proceedings of the IEEE.

[152]  D. Williams,et al.  Visibility of interference fringes near the resolution limit. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[153]  D G Pelli,et al.  Uncertainty explains many aspects of visual contrast detection and discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[154]  T. Cohn,et al.  Effect of large spatial uncertainty on foveal luminance increment detectability. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[155]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[156]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[157]  W. Geisler,et al.  Ideal discriminators in spatial vision: two-point stimuli. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[158]  David Williams Aliasing in human foveal vision , 1985, Vision Research.

[159]  M. J. Morgan,et al.  Positional acuity with chromatic stimuli , 1985, Vision Research.

[160]  I. Ohzawa,et al.  A comparison of contrast detection and discrimination , 1986, Vision Research.

[161]  M D'Zmura,et al.  Mechanisms of color constancy. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[162]  Hugh R. Wilson,et al.  Responses of spatial mechanisms can explain hyperacuity , 1986, Vision Research.

[163]  W S Geisler,et al.  Sampling-theory analysis of spatial vision. , 1986, Journal of the Optical Society of America. A, Optics and image science.

[164]  Edward A. Essock,et al.  Areas of spatial interaction for a hyperacuity stimulus , 1986, Vision Research.

[165]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[166]  I. Bodis-Wollner,et al.  Visual contrast sensitivity , 1988, Neurology.

[167]  M. Banks,et al.  Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[168]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[169]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989 .

[170]  Malcolm Slaughter,et al.  The Vertebrate Retina , 1990 .

[171]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .