Complex Flow for Wing-in-ground Effect Craft with Power Augmented Ram Engine in Cruise

Abstract Power augmented ram (PAR) engine is a popular equipment to reduce the requirement of power for takeoff and improve aerodynamic performance. To provide detailed insight into the aerodynamic characteristics of wing-in-ground effect (WIG) craft with PAR engine, numerical simulations are carried out on WIG craft models in cruise. Simplified engine models are applied to the simulations. Two cruise modes for PAR engine are considered. The aerodynamic characteristics of the WIG craft and other features are studied. Comparisons with WIG craft model without PAR show that shutoff of PAR engine results in an increase in drag and less change in lift. Accordingly for the work of PAR engine, the air flow blown from the engine accelerates the flow around the upper surface and a high-speed attached flow near the trailing edge is recorded. With the schemed PAR flow, more suction force is realized and the flow features over the wing vary noticeably. It is also shown that the Coanda effect, provided with an attached flow, introduces an appropriate and practical flow mode for WIG craft with PAR engine in cruise. The results refresh our understanding on aerodynamic characteristics of WIG craft.