Towards Random Uniform Sampling of Bipartite Graphs with given Degree Sequence

In this paper we consider a simple Markov chain for bipartite graphs with given degree sequence on $n$ vertices. We show that the mixing time of this Markov chain is bounded above by a polynomial in $n$ in case of half-regular degree sequence. The novelty of our approach lies in the construction of the multicommodity flow in Sinclair's method.

[1]  Hyunju Kim,et al.  Degree-based graph construction , 2009, 0905.4892.

[2]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[3]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[4]  S. Hakimi On Realizability of a Set of Integers as Degrees of the Vertices of a Linear Graph. I , 1962 .

[5]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[6]  Martin E. Dyer,et al.  Sampling regular graphs and a peer-to-peer network , 2005, SODA '05.

[7]  Van H. Vu,et al.  Generating Random Regular Graphs , 2003, STOC '03.

[8]  H. Ryser Combinatorial Properties of Matrices of Zeros and Ones , 1957, Canadian Journal of Mathematics.

[9]  Prasad Tetali,et al.  Simple Markov-chain algorithms for generating bipartite graphs and tournaments , 1997, SODA '97.

[10]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[11]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[12]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[13]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[14]  J. Hammersley,et al.  Poor Man's Monte Carlo , 1954 .

[15]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[16]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.