MAPbI3-xClx Mixed Halide Perovskite for Hybrid Solar Cells: The Role of Chloride as Dopant on the Transport and Structural Properties

Hybrid halide perovskites represent one of the most promising solutions toward the fabrication of all solid nanostructured solar cells, with improved efficiency and long-term stability. This article aims at investigating the structural properties of iodide/chloride mixed-halide perovskites and correlating them with their photovoltaic performances. We found out that, independent of the components ratio in the precursor solution, Cl incorporation in an iodide-based structure, is possible only at relatively low concentration levels (below 3–4%). However, even if the material band gap remains substantially unchanged, the Cl doping dramatically improves the charge transport within the perovskite layer, explaining the outstanding performances of meso-superstructured solar cells based on this material.

[1]  D. Mitzi,et al.  Conducting Layered Organic-inorganic Halides Containing <110>-Oriented Perovskite Sheets , 1995, Science.

[2]  Yang Yang,et al.  A polymer tandem solar cell with 10.6% power conversion efficiency , 2013, Nature Communications.

[3]  Alex K.-Y. Jen,et al.  High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers. , 2013, Nano letters.

[4]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[5]  Gang Zhang,et al.  Quantitative assessment on the cloning efficiencies of lentiviral transfer vectors with a unique clone site , 2012, Scientific Reports.

[6]  N. Kitazawa,et al.  Optical properties of CH3NH3PbX3 (X = halogen) and their mixed-halide crystals , 2002 .

[7]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[8]  Yongcai Qiu,et al.  All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. , 2013, Nanoscale.

[9]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[10]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  G. Papavassiliou,et al.  Nanocrystalline/microcrystalline materials based on lead-halide units , 2012 .

[12]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[13]  G. Gigli,et al.  Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. , 2014, Nano letters.

[14]  Laura M. Herz,et al.  Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber , 2013, Science.

[15]  Nam-Gyu Park,et al.  Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell , 2013 .

[16]  Vincenzo Balzani,et al.  Towards an electricity-powered world , 2011 .

[17]  D. Mitzi,et al.  Conducting tin halides with a layered organic-based perovskite structure , 1994, Nature.

[18]  Michael Grätzel,et al.  First-Principles Modeling of Mixed Halide Organometal Perovskites for Photovoltaic Applications , 2013 .

[19]  H. Snaith,et al.  Low-temperature processed meso-superstructured to thin-film perovskite solar cells , 2013 .

[20]  K. Schanze,et al.  Enhancing the efficiency of solution-processed polymer:colloidal nanocrystal hybrid photovoltaic cells using ethanedithiol treatment. , 2013, ACS nano.

[21]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[22]  Mark A. Ratner,et al.  Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance , 2010 .

[23]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[24]  David B. Mitzi,et al.  Solution-processed inorganic semiconductors , 2004 .

[25]  Jizheng Wang,et al.  Fill factor in organic solar cells. , 2013, Physical chemistry chemical physics : PCCP.

[26]  J. Even,et al.  Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications , 2013 .

[27]  A. D. Corso,et al.  Spin-orbit coupling with ultrasoft pseudopotentials: Application to Au and Pt , 2005 .

[28]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[29]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[30]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[31]  Koji Yamada,et al.  Tunable Perovskite Semiconductor CH3NH3SnX3 (X: Cl, Br, or I) Characterized by X-ray and DTA , 2011 .

[32]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.