On 1-Planar Graphs with Rotation Systems

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed at most once. This causes essential distinctions to planar graphs: planarity can be tested in linear time whereas 1-planarity is NP-hard [11]. We improve this result and show the NP-hardness for 1-planar graphs with a given rotation system. In addition, the crossing number problem remains NP-hard for 1-planar graphs even with a rotation system. However, there are tractable cases: 1-planarity can be tested efficiently for embedded graphs and for maximal graphs with a given rotation system.

[1]  Tomás Madaras,et al.  The structure of 1-planar graphs , 2007, Discret. Math..

[2]  Yusuke Suzuki Re-embeddings of Maximum 1-Planar Graphs , 2010, SIAM J. Discret. Math..

[3]  Vladimir P. Korzhik Minimal non-1-planar graphs , 2008, Discret. Math..

[4]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[5]  Md. Saidur Rahman,et al.  Planar Graph Drawing , 2004, Lecture Notes Series on Computing.

[6]  G. Ringel Ein Sechsfarbenproblem auf der Kugel , 1965 .

[7]  Petr Hlinený Crossing number is hard for cubic graphs , 2006, J. Comb. Theory, Ser. B.

[8]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[9]  János Pach,et al.  Graphs drawn with few crossings per edge , 1996, GD.

[10]  Giuseppe Liotta,et al.  Fáry's Theorem for 1-Planar Graphs , 2012, COCOON.

[11]  Michael J. Pelsmajer,et al.  Crossing Number of Graphs with Rotation Systems , 2007, Graph Drawing.

[12]  A. Zvonkin,et al.  Graphs on Surfaces and Their Applications , 2003 .

[13]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[14]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[15]  David Eppstein,et al.  On the Density of Maximal 1-Planar Graphs , 2012, Graph Drawing.

[16]  David Lichtenstein,et al.  Planar Formulae and Their Uses , 1982, SIAM J. Comput..

[17]  Vladimir P. Korzhik,et al.  Minimal Obstructions for 1‐Immersions and Hardness of 1‐Planarity Testing , 2013, J. Graph Theory.