Kinetics of hydrogen iodide decomposition over activated carbon catalysts in pellets

[1]  Zhichao Wang,et al.  Decomposition of hydrogen iodide over Pt–Ir/C bimetallic catalyst , 2010 .

[2]  Kefa Cen,et al.  Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur–iodine cycle , 2009 .

[3]  Kefa Cen,et al.  Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur–iodine cycle , 2009 .

[4]  A. Spadoni,et al.  Decomposition of hydrogen iodide in the S–I thermochemical cycle over Ni catalyst systems , 2009 .

[5]  M. Sardella,et al.  Activated carbon catalysts for the production of hydrogen via the sulfur―iodine thermochemical water splitting cycle , 2009 .

[6]  Young Ho Kim,et al.  Decomposition of hydrogen iodide on Pt/C-based catalysts for hydrogen production , 2008 .

[7]  Kefa Cen,et al.  Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur–iodine cycle , 2008 .

[8]  Francis A Kulacki,et al.  Utility scale hybrid wind–solar thermal electrical generation: A case study for Minnesota , 2008 .

[9]  Xuân-Mi Meyer,et al.  Vapour reactive distillation process for hydrogen production by HI decomposition from HI–I2–H2O solutions , 2008 .

[10]  Kefa Cen,et al.  Catalytic Thermal Decomposition of Hydrogen Iodide in Sulfur−Iodine Cycle for Hydrogen Production , 2008 .

[11]  Hui Wang,et al.  Hydrogen production from a chemical cycle of H2S splitting , 2007 .

[12]  M. Lanchi,et al.  Hydrogen/methanol production by sulfur–iodine thermochemical cycle powered by combined solar/fossil energy , 2007 .

[13]  Bruce C.R. Ewan,et al.  The Separation of Hix in the Sulphur–Iodine Thermochemical Cycle for Sustainable Hydrogen Production , 2005 .

[14]  Kaoru Onuki,et al.  A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine–sulfur process , 2004 .

[15]  V. Yungman,et al.  NIST-JANAF Thermochemical Tables. III. Diatomic Hydrogen Halide Gases , 2004 .

[16]  P. B. Weisz,et al.  The behaviour of porous catalyst particles in view of internal mass and heat diffusion effects , 1995 .

[17]  Susumu Mizuta,et al.  Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Magnesium–Iodine Thermochemical Cycle , 1981 .

[18]  G. E. Besenbruch,et al.  Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle , 1980 .

[19]  K. Bischoff,et al.  Correspondence. Reaction Rate Constant May Modify the Effects of Backmixing , 1961 .

[20]  Octave Levenspiel,et al.  Backmixing in the Design of Chemical Reactors , 1959 .

[21]  H. Corsepius,et al.  Über die thermodynamischen Eigenschaften des festen Systems Aluminium—Zink , 1959 .

[22]  P. Weisz Diffusivity of Porous Particles , 1957 .

[23]  G. B. Kistiakowsky HOMOGENEOUS GAS REACTIONS AT HIGH CONCENTRATIONS. I. DECOMPOSITION OF HYDROGEN IODIDE , 1928 .

[24]  H. Jakobsen,et al.  Chemical Reaction Engineering , 2014 .

[25]  Zhihua Wang,et al.  Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production , 2011 .

[26]  Kefa Cen,et al.  Platinum–ceria–zirconia catalysts for hydrogen production in sulfur-iodine cycle , 2010 .

[27]  Jianzhong Liu,et al.  Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle , 2008 .

[28]  K. F. Knoche,et al.  Thermochemical water splitting through direct Hi-decomposition from H2O/HI/I2 solutions , 1989 .

[29]  Yuji Shindo,et al.  Kinetics of the catalytic decomposition of hydrogen iodide in the thermochemical hydrogen production , 1984 .

[30]  D. R. O'keefe,et al.  Catalysis research in thermochemical water-splitting processes , 1980 .

[31]  C. Hinshelwood,et al.  CCCCII.—The relation of homogeneous to catalysed reactions. The catalytic decomposition of hydrogen iodide on the surface of platinum , 1925 .

[32]  E. Baumann Ueber das normale Vorkommen des Jods im Thierkörper. (III. Mittheilung.) , 1896 .