Genetic and phenotypic diversity in Burkholderia: contributions by prophage and phage-like elements

[1]  J. Badger,et al.  Continuing Evolution of Burkholderia mallei Through Genome Reduction and Large-Scale Rearrangements , 2010, Genome biology and evolution.

[2]  G. Gronvall Medical Aspects of Biological Warfare Edited by Zygmunt F. Dembek Falls Church, Virginia: Office of The Surgeon General, United States Army; Washington, DC: Borden Institute, Walter Reed Army Medical Center, 2007. 694 pp., Illustrated. $72.25 (hardcover) , 2009 .

[3]  Raymond K. Auerbach,et al.  Genomic islands from five strains of Burkholderia pseudomallei , 2008, BMC Genomics.

[4]  H. Neve,et al.  Morphology, Genome Sequence, and Structural Proteome of Type Phage P335 from Lactococcus lactis , 2008, Applied and Environmental Microbiology.

[5]  C. Dowson,et al.  Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology , 2008, Journal of applied microbiology.

[6]  Direk Limmathurotsakul,et al.  Burkholderia pseudomallei genome plasticity associated with genomic island variation , 2008, BMC Genomics.

[7]  C. Upton,et al.  Role of phages in the pathogenesis of Burkholderia, or 'Where are the toxin genes in Burkholderia phages?'. , 2007, Current opinion in microbiology.

[8]  S. Salzberg,et al.  Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake , 2007, Genome Biology.

[9]  J. Musser,et al.  Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. , 2007, Trends in microbiology.

[10]  Luke E. Ulrich,et al.  Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility , 2006, Proceedings of the National Academy of Sciences.

[11]  R. Barrangou,et al.  Comparative Genomics and Transcriptional Analysis of Prophages Identified in the Genomes of Lactobacillus gasseri, Lactobacillus salivarius, and Lactobacillus casei , 2006, Applied and Environmental Microbiology.

[12]  David DeShazer,et al.  Genomic patterns of pathogen evolution revealed by comparison of Burkholderia pseudomallei, the causative agent of melioidosis, to avirulent Burkholderia thailandensis , 2006, BMC Microbiology.

[13]  J. Lipuma,et al.  Divergence and Mosaicism among Virulent Soil Phages of the Burkholderia cepacia Complex , 2006, Journal of bacteriology.

[14]  Kim Rutherford,et al.  Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  O. White,et al.  Structural flexibility in the Burkholderia mallei genome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  F. Blattner,et al.  Mauve: multiple alignment of conserved genomic sequence with rearrangements. , 2004, Genome research.

[17]  Richard A. Moore,et al.  Contribution of Gene Loss to the Pathogenic Evolution of Burkholderia pseudomallei and Burkholderia mallei , 2004, Infection and Immunity.

[18]  J. Lipuma,et al.  Burkholderia cenocepacia phage BcepMu and a family of Mu-like phages encoding potential pathogenesis factors. , 2004, Journal of molecular biology.

[19]  D. DeShazer Genomic Diversity of Burkholderia pseudomallei Clinical Isolates: Subtractive Hybridization Reveals a Burkholderia mallei-Specific Prophage in B. pseudomallei 1026b , 2004, Journal of bacteriology.

[20]  Finbarr Hayes,et al.  Toxins-Antitoxins: Plasmid Maintenance, Programmed Cell Death, and Cell Cycle Arrest , 2003, Science.

[21]  Ghislain Fournous,et al.  Prophage Genomics , 2003, Microbiology and Molecular Biology Reviews.

[22]  B. Berger,et al.  Integration and Distribution of Lactobacillus johnsonii Prophages , 2003, Journal of bacteriology.

[23]  S. Casjens,et al.  Prophages and bacterial genomics: what have we learned so far? , 2003, Molecular microbiology.

[24]  Masahira Hattori,et al.  Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. , 2003, Genome research.

[25]  H. Ackermann,et al.  Bacteriophage observations and evolution. , 2003, Research in microbiology.

[26]  R. Hendrix,et al.  Bacteriophages with tails: chasing their origins and evolution. , 2003, Research in microbiology.

[27]  R. Dixon,et al.  Domain Architectures of σ54-Dependent Transcriptional Activators , 2003 .

[28]  G H Goldman,et al.  Comparative Analyses of the Complete Genome Sequences of Pierce's Disease and Citrus Variegated Chlorosis Strains of Xylella fastidiosa , 2003, Journal of bacteriology.

[29]  E. Boyd,et al.  Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. , 2002, Trends in microbiology.

[30]  D. Woods The use of animal infection models to study the pathogenesis of melioidosis and glanders. , 2002, Trends in microbiology.

[31]  R. Edwards,et al.  The Phage Proteomic Tree: a Genome-Based Taxonomy for Phage , 2002, Journal of bacteriology.

[32]  D. DeShazer,et al.  Burkholderia thailandensis E125 Harbors a Temperate Bacteriophage Specific for Burkholderia mallei , 2002, Journal of bacteriology.

[33]  Haruo Watanabe,et al.  Dissemination of the Phage-Associated Novel Superantigen Gene speL in Recent Invasive and Noninvasive Streptococcus pyogenes M3/T3 Isolates in Japan , 2002, Infection and Immunity.

[34]  R. Kessin,et al.  The human pathogen Pseudomonas aeruginosa utilizes conserved virulence pathways to infect the social amoeba Dictyostelium discoideum , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Scott R. Lillibridge,et al.  Public Health Assessment of Potential Biological Terrorism Agents , 2002, Emerging infectious diseases.

[36]  Roger W. Hendrix,et al.  Phage Genomics Small Is Beautiful , 2002, Cell.

[37]  Martin G. Reese,et al.  Application of a Time-delay Neural Network to Promoter Annotation in the Drosophila Melanogaster Genome , 2001, Comput. Chem..

[38]  D. DeShazer,et al.  Identification of a Burkholderia mallei polysaccharide gene cluster by subtractive hybridization and demonstration that the encoded capsule is an essential virulence determinant. , 2001, Microbial pathogenesis.

[39]  H. Brüssow,et al.  Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages , 2001, Molecular microbiology.

[40]  L. Bossi,et al.  Variable assortment of prophages provides a transferable repertoire of pathogenic determinants in Salmonella , 2001, Molecular microbiology.

[41]  S. Casjens,et al.  The origins and ongoing evolution of viruses. , 2000, Trends in microbiology.

[42]  R. Hendrix,et al.  Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. , 2000, Journal of molecular biology.

[43]  S. Beverley,et al.  The role of phosphoglycans in Leishmania-sand fly interactions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Eugen C. Buehler,et al.  Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana , 1999, Nature.

[45]  N. White,et al.  Arabinose assimilation defines a nonvirulent biotype of Burkholderia pseudomallei , 1997, Infection and immunity.

[46]  R. Durbin,et al.  A dot-matrix program with dynamic threshold control suited for genomic DNA and protein sequence analysis. , 1995, Gene.

[47]  S F Altschul,et al.  Protein database searches for multiple alignments. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[48]  R. Brent,et al.  Plating Lambda Phage to Generate Plaques , 1987, Current protocols in molecular biology.

[49]  Luther E. Lindler,et al.  Biological weapons defense: infectious disease and counterbioterrorism. , 2004 .

[50]  R. Dixon,et al.  Domain architectures of sigma54-dependent transcriptional activators. , 2003, Journal of bacteriology.

[51]  William C. Nierman,et al.  Lin, X. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761-768 , 1999 .

[52]  D. DeShazer,et al.  Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. , 1998, International journal of systematic bacteriology.