Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm.

[1]  Rosa Maria Valdovinos,et al.  Dynamic and Static Weighting in Classifier Fusion , 2005, IbPRIA.

[2]  O. Reiser,et al.  Principles Of Gestalt Psychology , 1936 .

[3]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[4]  Ian Burns,et al.  Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..

[5]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[6]  A. Asuncion,et al.  UCI Machine Learning Repository, University of California, Irvine, School of Information and Computer Sciences , 2007 .

[7]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[8]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[9]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[11]  Helge J. Ritter,et al.  Adaptive color segmentation-a comparison of neural and statistical methods , 1997, IEEE Trans. Neural Networks.

[12]  Derek Partridge,et al.  Multiple Classifier Systems: Software Engineered, Automatically Modular Leading to a Taxonomic Overview , 2002, Pattern Analysis & Applications.

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[15]  Ludmila I. Kuncheva,et al.  "Fuzzy" versus "nonfuzzy" in combining classifiers designed by Boosting , 2003, IEEE Trans. Fuzzy Syst..

[16]  Mingjing Li,et al.  Color texture moments for content-based image retrieval , 2002, Proceedings. International Conference on Image Processing.

[17]  Josef Kittler,et al.  Combining multiple classifiers by averaging or by multiplying? , 2000, Pattern Recognit..

[18]  Stuart C. Shapiro,et al.  Encyclopedia of artificial intelligence, vols. 1 and 2 (2nd ed.) , 1992 .

[19]  P. Maillard Comparing Texture Analysis Methods through Classification , 2003 .

[20]  Paul F. Whelan,et al.  Experiments in colour texture analysis , 2001, Pattern Recognit. Lett..

[21]  Luís A. Alexandre,et al.  On combining classifiers using sum and product rules , 2001, Pattern Recognit. Lett..

[22]  Zixing Cai,et al.  Advances of Research in Fuzzy Integral for Classifiers' fusion , 2007, Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing.

[23]  David G. Stork,et al.  Pattern Classification , 1973 .

[24]  Domenec Puig,et al.  Automatic texture feature selection for image pixel classification , 2006, Pattern Recognit..

[25]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[26]  Shun-ichi Amari,et al.  Combining Classifiers and Learning Mixture-of-Experts , 2009, Encyclopedia of Artificial Intelligence.

[27]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[28]  Gonzalo Pajares,et al.  A Hopfield Neural Network for combining classifiers applied to textured images , 2010, Neural Networks.

[29]  João B. D. Cabrera,et al.  On the impact of fusion strategies on classification errors for large ensembles of classifiers , 2006, Pattern Recognit..

[30]  Madasu Hanmandlu,et al.  A fuzzy approach to texture segmentation , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[31]  Majid Ahmadi,et al.  Fusion of classifiers with fuzzy integrals , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[32]  Joydeep Ghosh,et al.  Hierarchical Fusion of Multiple Classifiers for Hyperspectral Data Analysis , 2002, Pattern Analysis & Applications.

[33]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..

[36]  Joydeep Ghosh,et al.  Best-bases feature extraction algorithms for classification of hyperspectral data , 2001, IEEE Trans. Geosci. Remote. Sens..

[37]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[38]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[39]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[40]  Yafit Cohen,et al.  Application of spectral features’ ratios for improving classification in partially calibrated hyperspectral imagery: a case study of separating Mediterranean vegetation species , 2006, Journal of Real-Time Image Processing.

[41]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[42]  P. J. Herrera,et al.  Combining classifiers through fuzzy cognitive maps in natural images , 2009 .

[43]  L. Kuncheva ‘ Fuzzy ’ vs ‘ Non-fuzzy ’ in Combining Classifiers Designed by Boosting , 2003 .

[44]  Alejandro Pazos Sierra,et al.  Encyclopedia of Artificial Intelligence , 2008 .

[45]  Zixing Cai,et al.  Advances of Research in Fuzzy Integral for Classifiers' fusion , 2007, Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007).

[46]  Jianhua Zhang,et al.  Combining multiple precision-boosted classifiers for indoor-outdoor scene classification , 2005, Third International Conference on Information Technology and Applications (ICITA'05).

[47]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.