Markovian master equations: a critical study

We derive Markovian master equations for single and interacting harmonic systems in different scenarios, including strong internal coupling. By comparing the dynamics resulting from the corresponding master equations with numerical simulations of the global system's evolution, we delimit their validity regimes and assess the robustness of the assumptions usually made in the process of deriving the reduced Markovian dynamics. The results of these illustrative examples serve to clarify the general properties of other open quantum system scenarios subject to treatment within a Markovian approximation.

[1]  Xiao-Ming Lu,et al.  Quantum Fisher Information Flow and Non-Markovianity in Open Systems , 2009 .

[2]  Jun-Hong An,et al.  Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels , 2007, 0707.2278.

[3]  M. B. Plenio,et al.  Dephasing-assisted transport: quantum networks and biomolecules , 2008, 0807.4902.

[4]  R. Zwanzig Ensemble Method in the Theory of Irreversibility , 1960 .

[5]  S. Lloyd,et al.  Environment-assisted quantum walks in photosynthetic energy transfer. , 2008, The Journal of chemical physics.

[6]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[7]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[8]  Jinhyoung Lee,et al.  Dynamics of nonlocality for a two-mode squeezed state in a thermal environment , 2000, quant-ph/0003077.

[9]  D. Walls,et al.  Master equation for strongly interacting systems , 1973 .

[10]  M. A. de Ponte,et al.  Decoherence in strongly coupled quantum oscillators , 2003 .

[11]  F. Haake Statistical treatment of open systems by generalized master equations , 1973 .

[12]  Peter Hanggi,et al.  Floquet-Markovian description of the parametrically driven, dissipative harmonic quantum oscillator , 1997 .

[13]  E. Epelbaum,et al.  Four-nucleon force using the method of unitary transformation , 2007, 0710.4250.

[14]  M. A. de Ponte,et al.  Decoherence in a system of strongly coupled quantum oscillators. I. Symmetric network , 2004 .

[15]  H. Scutaru,et al.  Fidelity for multimode thermal squeezed states , 2000 .

[16]  Thomas,et al.  Quantum-Mechanical Description of Two Coupled Harmonic Oscillators , 1968 .

[17]  Neil P. Oxtoby,et al.  Probing a composite spin-boson environment , 2009, 0901.4470.

[18]  E. Davies,et al.  Markovian master equations , 1974 .

[19]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[20]  M. A. de Ponte,et al.  Decoherence in a system of strongly coupled quantum oscillators. II. Central-oscillator network , 2004 .

[21]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[22]  Jinhyoung Lee,et al.  Experimentally realizable characterizations of continuous-variable Gaussian states , 2002 .

[23]  C. Chicone Ordinary Differential Equations with Applications , 1999, Texts in Applied Mathematics.

[24]  T. Hiroshima Decoherence and entanglement in two-mode squeezed vacuum states. , 2000, quant-ph/0006100.

[25]  S. V. Lawande,et al.  On exact master equation for an open system , 1977 .

[26]  H. Grabert,et al.  Exact time evolution and master equations for the damped harmonic oscillator , 1996, physics/9610001.

[27]  D. Loss,et al.  Self-correcting quantum memory in a thermal environment , 2009, 0908.4264.

[28]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[29]  D. Porras,et al.  Mesoscopic spin-boson models of trapped ions , 2007, 0710.5145.

[30]  Animesh Datta,et al.  Highly efficient energy excitation transfer in light-harvesting complexes: The fundamental role of n , 2009, 0901.4454.

[31]  Rosario Fazio,et al.  Solid-state quantum communication with Josephson arrays , 2005 .

[32]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[33]  H. Bombin,et al.  Self-correcting quantum computers , 2009, 0907.5228.

[34]  H. Scutaru,et al.  Fidelity for displaced squeezed thermal states and the oscillator semigroup , 1997, quant-ph/9708013.

[35]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[36]  Anupam Garg,et al.  Decoherence in Ion Trap Quantum Computers. , 1996 .

[37]  Irwin Oppenheim,et al.  Memory effects in the relaxation of quantum open systems , 1992 .

[38]  M. G. A. Paris,et al.  Purity of Gaussian states: Measurement schemes and time evolution in noisy channels , 2003 .

[39]  Ting Yu,et al.  Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Masoud Mohseni,et al.  Environment-assisted quantum transport , 2008, 0807.0929.

[41]  E. Davies,et al.  Markovian master equations. II , 1976 .

[42]  Robert Alicki,et al.  The quantum open system as a model of the heat engine , 1979 .

[43]  J. Meijer,et al.  Room-temperature coherent coupling of single spins in diamond , 2006, quant-ph/0605038.

[44]  Francesco Petruccione,et al.  Dissipative quantum systems in strong laser fields: Stochastic wave-function method and Floquet theory , 1997 .

[45]  Andreas Buchleitner,et al.  Coherent Evolution in Noisy Environments , 2002 .

[46]  Augusto J. Roncaglia,et al.  Dynamical phases for the evolution of the entanglement between two oscillators coupled to the same environment , 2008, 0809.1676.

[47]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[48]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[49]  T. Apostol Introduction to analytic number theory , 1976 .

[50]  Jinhyoung Lee,et al.  Transfer of nonclassical features in quantum teleportation via a mixed quantum channel , 2000 .

[51]  C. R. Willis,et al.  Time-dependent projection-operator approach to master equations for coupled systems , 1974 .

[52]  Jakub S. Prauzner-Bechcicki,et al.  LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002 .

[53]  Neil F. Johnson,et al.  Efficiency of energy transfer in a light-harvesting system under quantum coherence , 2007, 0708.1159.

[54]  H. Carmichael Statistical Methods in Quantum Optics 1 , 1999 .

[55]  Andrzej Kossakowski,et al.  Properties of Quantum Markovian Master Equations , 1978 .

[56]  Herbert Spohn,et al.  Open quantum systems with time-dependent Hamiltonians and their linear response , 1978 .

[57]  W. Peier,et al.  Time evolution of open systems: I. Master equations , 1972 .

[58]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[59]  Herbert Spohn,et al.  The proper form of the generator in the weak coupling limit , 1979 .

[60]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[61]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[62]  John H. Reina,et al.  Galactic Dynamics , 1995 .

[63]  Berthold-Georg Englert,et al.  Five Lectures on Dissipative Master Equations , 2002, quant-ph/0206116.

[64]  S. V. Lawande,et al.  A master equation for spontaneous emission from a system of harmonic oscillators , 1978 .

[65]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[66]  M. Scully,et al.  Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations , 2003 .

[67]  Dirk-Gunnar Welsch,et al.  Entanglement generation and degradation by passive optical devices , 2001 .

[68]  Paz,et al.  Quantum Brownian motion in a general environment: Exact master equation with nonlocal dissipation and colored noise. , 1992, Physical review. D, Particles and fields.