Evolutionary ideas about genetically manipulated mosquitoes and malaria control.

The release of mosquitoes that are genetically manipulated to destroy the malaria parasite Plasmodium falciparum is being considered as a possible method for malaria control. Hopes for this have been raised by the identification of genes involved in the mosquito's immune response and by advances in the tools required to transform mosquitoes. But, will such genes be able to spread in natural populations? What will their impact be on epidemiology of the disease? This article attempts to give some answers to these questions by reviewing some theoretical and empirical considerations underlying the evolutionary epidemiology of genetic manipulation and refractoriness.

[1]  M. Siva-jothy,et al.  Decreased immune response as a proximate cost of copulation and oviposition in a damselfly , 1998 .

[2]  J. Koella,et al.  Melanization of Plasmodium falciparum and C-25 Sephadex Beads by Field-Caught Anopheles gambiae (Diptera: Culicidae) from Southern Tanzania , 2002, Journal of medical entomology.

[3]  H. Hurd,et al.  Malaria‐induced reduction of fecundity during the first gonotrophic cycle of Anopheles Stephensi mosquitoes , 1995, Medical and veterinary entomology.

[4]  A GENETIC CORRELATION BETWEEN AGE AT PUPATION AND MELANIZATION IMMUNE RESPONSE OF THE YELLOW FEVER MOSQUITO AEDES AEGYPTI , 2002, Evolution; international journal of organic evolution.

[5]  S. Paskewitz,et al.  Effects of larval nutrition, adult body size, and adult temperature on the ability of Anopheles gambiae (Diptera: Culicidae) to melanize sephadex beads. , 1998, Journal of medical entomology.

[6]  J. Koella,et al.  The malaria parasite, Plasmodium falciparum, increases the frequency of multiple feeding of its mosquito vector, Anopheles gambiae , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[7]  T. Tchuinkam,et al.  The early sporogonic cycle of Plasmodium falciparum in laboratory‐infected Anopheles gambiae: an estimation of parasite efficacy , 1998, Tropical medicine & international health : TM & IH.

[8]  J. Sachs,et al.  The economic and social burden of malaria , 2002, Nature.

[9]  P. Brey The impact of stress on insect immunity , 1994 .

[10]  M. G. Kidwell,et al.  Transposable elements as population drive mechanisms: specification of critical parameter values. , 1994, Journal of medical entomology.

[11]  R. Rizki,et al.  Parasitoid virus-like particles destroy Drosophila cellular immunity. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Knols,et al.  Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. , 2000, Parasitology.

[13]  M. Riehle,et al.  Effect of mosquito age and reproductive status on melanization of sephadex beads in Plasmodium-refractory and -susceptible strains of Anopheles gambiae. , 1995, Journal of invertebrate pathology.

[14]  J. Koella,et al.  Reduced efficacy of the immune melanization response in mosquitoes infected by malaria parasites , 2002, Parasitology.

[15]  J. Koella,et al.  Stage-specific manipulation of a mosquito's host-seeking behavior by the malaria parasite Plasmodium gallinaceum , 2002 .

[16]  E. Walker,et al.  Genetically manipulated vectors of human disease: a practical overview. , 2001, Trends in parasitology.

[17]  H. Ferguson,et al.  Why is the effect of malaria parasites on mosquito survival still unresolved? , 2002, Trends in parasitology.

[18]  A. Spielman,et al.  Spatially explicit model of transposon-based genetic drive mechanisms for displacing fluctuating populations of anopheline vector mosquitoes. , 1998, Journal of medical entomology.

[19]  H. Godfray,et al.  Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster , 1997, Nature.

[20]  H. Erfle,et al.  Quantitative trait loci for refractoriness of Anopheles gambiae to Plasmodium cynomolgi B. , 1997, Science.

[21]  F. Kafatos,et al.  Innate immune defense against malaria infection in the mosquito. , 2001, Current opinion in immunology.

[22]  H. Hurd,et al.  Effect of Plasmodium yoelii nigeriensis (Haemosporidia: Plasmodiidae) on Anopheles stephensi (Diptera: Culicidae) vitellogenesis. , 1998, Journal of medical entomology.

[23]  R. Sakai,et al.  Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae. , 1986, Science.

[24]  A. Ghosh,et al.  Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite , 2002, Nature.

[25]  A. M. Ahmed,et al.  The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae , 2002 .

[26]  N. Beckage Modulation of immune responses to parasitoids by polydnaviruses , 1998, Parasitology.

[27]  Andrea Crisanti,et al.  Stable germline transformation of the malaria mosquito Anopheles stephensi , 2000, Nature.

[28]  Christophe Boëte,et al.  A theoretical approach to predicting the success of genetic manipulation of malaria mosquitoes in malaria control , 2002, Malaria Journal.

[29]  P. Schmid-Hempel,et al.  Survival for immunity: the price of immune system activation for bumblebee workers. , 2000, Science.

[30]  H. Hurd,et al.  Plasmodium yoelii nigeriensis: the effect of high and low intensity of infection upon the egg production and bloodmeal size of Anopheles stephensi during three gonotrophic cycles , 1995, Parasitology.

[31]  Yi Wang,et al.  Steinernema glaseriSurface Coat Protein Suppresses the Immune Response ofPopillia japonica(Coleoptera: Scarabaeidae) Larvae , 1999 .

[32]  D. Severson,et al.  Mapping a quantitative trait locus involved in melanotic encapsulation of foreign bodies in the malaria vector, Anopheles gambiae. , 1997, Genetics.

[33]  J. Xu,et al.  Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[34]  K. McKean,et al.  Increased sexual activity reduces male immune function in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Hurd,et al.  The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania , 1997, Parasitology.

[36]  J. Koella,et al.  The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[37]  G. Macdonald The Epidemiology and Control of Malaria. , 1957 .

[38]  Y. Han,et al.  Mosquito immune responses and malaria transmission: lessons from insect model systems and implications for vertebrate innate immunity and vaccine development. , 2000, Insect biochemistry and molecular biology.

[39]  G. Williams,et al.  Malaria-induced apoptosis in mosquito ovaries: a mechanism to control vector egg production. , 2001, The Journal of experimental biology.

[40]  A. James,et al.  Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. , 2000, The American journal of tropical medicine and hygiene.

[41]  M. Strand,et al.  Immunological basis for compatibility in parasitoid-host relationships. , 1995, Annual review of entomology.

[42]  J. Koella,et al.  Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite Plasmodium falciparum , 1992, Parasitology.

[43]  S. Vinson How parasitoids deal with the immune system of their host: An overview , 1990 .

[44]  M. Brehélin,et al.  Symbiosis and pathogenicity of nematode-bacterium complexes , 1997 .

[45]  P. Bork,et al.  Anopheles gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Krogstad,et al.  The Resurgence of Malaria , 1998 .