Distributed parameter thermal system control and observation by Green–Galerkin methods

This article addresses the problem of distributed parameter control and observation in thermal processing of materials. A novel numerical technique is developed for infinite-dimensional thermal conduction systems, based on Galerkin optimization of an energy index employing Green's functions. Various simulations are conducted to prove that despite the complexities that arise from the distributed parameter nature of the system, the proposed method successfully observes the temperature field that exists inside a solid body by employing strictly surface temperature measurements. Moreover, the existence of a duality principle between distributed parameter thermal control and thermal observation is also investigated. Copyright © 2004 John Wiley & Sons, Ltd.

[1]  Panagiotis D. Christofides,et al.  Integrating nonlinear output feedback control and optimal actuator/sensor placement for transport-reaction processes , 2001 .

[2]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[3]  Upendra Ummethala Control of heat conduction in manufacturing processes : a distributed parameter systems approach , 1997 .

[4]  David L. Russell,et al.  A Unified Boundary Controllability Theory for Hyperbolic and Parabolic Partial Differential Equations , 1973 .

[5]  Charalabos C. Doumanidis Thermal Manufacturing Process Control by Lumped Mimo and Distributed-Parameter Methods , 1995 .

[6]  Marios Alaeddine,et al.  Distributed parameter thermal controllability: a numerical method for solving the inverse heat conduction problem , 2004 .

[7]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[8]  A. Balakrishnan Optimal Control Problems in Banach Spaces , 1965 .

[9]  P. Christofides,et al.  Dynamic optimization of dissipative PDE systems using nonlinear order reduction , 2002 .

[10]  A. Balakrishnan Applied Functional Analysis , 1976 .

[11]  Michael A. Demetriou,et al.  Adaptive identification of second-order distributed parameter systems , 1994 .

[12]  P. Christofides,et al.  Finite-dimensional approximation and control of non-linear parabolic PDE systems , 2000 .

[13]  P. Daoutidis,et al.  Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds , 1997 .

[14]  Panagiotis D. Christofides,et al.  Optimization of transport-reaction processes using nonlinear model reduction , 2000 .

[15]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[16]  Michel C. Delfour,et al.  CONTROLLABILITY AND OBSERVABILITY FOR INFINITE-DIMENSIONAL SYSTEMS* , 1972 .