Extended Online DMD and Weighted Modifications for Streaming Data Analysis

We present novel methods for computing the online dynamic mode decomposition (online DMD) for streaming datasets. We propose a framework that allows incremental updates to the DMD operator as data become available. Due to its ability to work on datasets with lower ranks, the proposed method is more advantageous than existing ones. A noteworthy feature of the method is that it is entirely data-driven and does not require knowledge of any underlying governing equations. Additionally, we present a modified version of our proposed approach that utilizes a weighted alternative to online DMD. The suggested techniques are demonstrated using several numerical examples.

[1]  Jixing Cao,et al.  Continuous crack detection using the combination of dynamic mode decomposition and connected component-based filtering method , 2023, Structures.

[2]  Arlindo L. Oliveira,et al.  Learning the dynamics of realistic models of C. elegans nervous system with recurrent neural networks , 2023, Scientific Reports.

[3]  R. McClarren,et al.  Variable Dynamic Mode Decomposition for Estimating Time Eigenvalues in Nuclear Systems , 2022, Nuclear Science and Engineering.

[4]  E. Valero,et al.  A dynamic mode decomposition technique for the analysis of non-uniformly sampled flow data , 2022, J. Comput. Phys..

[5]  Caiming Zhang,et al.  A stock price prediction method based on meta-learning and variational mode decomposition , 2022, Knowl. Based Syst..

[6]  S. Norris,et al.  Reduced-communication parallel dynamic mode decomposition , 2022, J. Comput. Sci..

[7]  S. Brunton,et al.  Modern Koopman Theory for Dynamical Systems , 2021, SIAM Rev..

[8]  E. Gutmark,et al.  Transforming the Shock Pattern of Supersonic Jets Using Fluidic Injection , 2019, AIAA Journal.

[9]  K. Mahesh,et al.  A parallel and streaming Dynamic Mode Decomposition algorithm with finite precision error analysis for large data , 2018, J. Comput. Phys..

[10]  Soledad Le Clainche,et al.  Higher order dynamic mode decomposition of noisy experimental data: The flow structure of a zero-net-mass-flux jet , 2017 .

[11]  Steven L. Brunton,et al.  Dynamic mode decomposition for compressive system identification , 2017, AIAA Journal.

[12]  K. P. Soman,et al.  Stock price prediction using dynamic mode decomposition , 2017, 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[13]  Clarence W. Rowley,et al.  Online dynamic mode decomposition for time-varying systems , 2017, SIAM J. Appl. Dyn. Syst..

[14]  Daiki Matsumoto,et al.  On-the-fly algorithm for Dynamic Mode Decomposition using Incremental Singular Value Decomposition and Total Least Squares , 2017, 1703.11004.

[15]  Bingni W. Brunton,et al.  Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems , 2016 .

[16]  S. Brunton,et al.  Including inputs and control within equation-free architectures for complex systems , 2016 .

[17]  Wen Long,et al.  Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market , 2016 .

[18]  Peter J. Schmid,et al.  Parallel data-driven decomposition algorithm for large-scale datasets: with application to transitional boundary layers , 2016 .

[19]  Steven L. Brunton,et al.  Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..

[20]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[21]  J. Nathan Kutz,et al.  Dynamic mode decomposition for financial trading strategies , 2015, 1508.04487.

[22]  Steven L. Brunton,et al.  Multiresolution Dynamic Mode Decomposition , 2015, SIAM J. Appl. Dyn. Syst..

[23]  Heni Ben Amor,et al.  Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.

[24]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[25]  F. Guéniat,et al.  A dynamic mode decomposition approach for large and arbitrarily sampled systems , 2015 .

[26]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[27]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[28]  Clarence W. Rowley,et al.  Dynamic mode decomposition for large and streaming datasets , 2014, 1406.7187.

[29]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[30]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[31]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[32]  Peter J. Schmid,et al.  Sparsity-promoting dynamic mode decomposition , 2012, 1309.4165.

[33]  H. Sung,et al.  Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations , 2011 .

[34]  Peter J. Schmid,et al.  Application of the dynamic mode decomposition to experimental data , 2011 .

[35]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[36]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[37]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[38]  G. Nedzhibov Dynamic mode decomposition: an alternative algorithm for full-rank datasets , 2023, Applied Mathematics.