A Fast Marching Method for Hamilton-Jacobi Equations Modeling Monotone Front Propagations

In this paper we present a generalization of the Fast Marching method introduced by J.A. Sethian in 1996 to solve numerically the eikonal equation. The new method, named Buffered Fast Marching (BFM), is based on a semi-Lagrangian discretization and is suitable for Hamilton-Jacobi equations modeling monotonically advancing fronts, including Hamilton-Jacobi-Bellman and Hamilton-Jacobi-Isaacs equations which arise in the framework of optimal control problems and differential games. We also show the convergence of the algorithm to the viscosity solution. Finally we present several numerical tests comparing the BFM method with other existing methods.

[1]  A. Vladimirsky Static PDEs for time-dependent control problems , 2006 .

[2]  Maurizio Falcone,et al.  Fast Semi-Lagrangian Schemes for the Eikonal Equation and Applications , 2007, SIAM J. Numer. Anal..

[3]  Maurizio Falcone,et al.  Numerical Methods for differential Games Based on Partial differential equations , 2006, IGTR.

[4]  Maurizio Falcone,et al.  Numerical Solution of the Isaacs Equation for Differential Games with State Constraints , 2008 .

[5]  Hongkai Zhao,et al.  A Fast Sweeping Method for Static Convex Hamilton–Jacobi Equations , 2007, J. Sci. Comput..

[6]  Maurizio Falcone,et al.  Fully-Discrete Schemes for the Value Function of Pursuit-Evasion Games with State Constraints , 2009 .

[7]  Maurizio Falcone,et al.  Convergence of a Generalized Fast-Marching Method for an Eikonal Equation with a Velocity-Changing Sign , 2008, SIAM J. Numer. Anal..

[8]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[9]  Elisabetta Carlini,et al.  A Non-Monotone Fast Marching Scheme for a Hamilton-Jacobi Equation Modelling Dislocation Dynamics , 2006 .

[10]  Seongjai Kim,et al.  An O(N) Level Set Method for Eikonal Equations , 2000, SIAM J. Sci. Comput..

[11]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[12]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Hasnaa Zidani,et al.  An Efficient Data Structure and Accurate Scheme to Solve Front Propagation Problems , 2010, J. Sci. Comput..

[14]  Stefan Turek,et al.  THE EIKONAL EQUATION: NUMERICAL EFFICIENCY VS. ALGORITHMIC COMPLEXITY ON QUADRILATERAL GRIDS , 2005 .

[15]  Maurizio Falcone,et al.  A Characteristics Driven Fast Marching Method for the Eikonal Equation , 2008 .

[16]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Falcone,et al.  An approximation scheme for the minimum time function , 1990 .

[18]  Maurizio Falcone The minimum time problem and its applications to front propagation , 1994 .

[19]  J. Tsitsiklis,et al.  Efficient algorithms for globally optimal trajectories , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[20]  Ron Kimmel,et al.  Optimal Algorithm for Shape from Shading and Path Planning , 2001, Journal of Mathematical Imaging and Vision.

[21]  Stefano Soatto,et al.  Fast Marching Method for Generic Shape from Shading , 2005, VLSM.

[22]  M. Bardi,et al.  Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations , 1997 .

[23]  Stanley Osher,et al.  Fast Sweeping Algorithms for a Class of Hamilton-Jacobi Equations , 2003, SIAM J. Numer. Anal..

[24]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[25]  M. Falcone,et al.  Level Sets of Viscosity Solutions: some Applications to Fronts and Rendez-vous Problems , 1994, SIAM J. Appl. Math..

[26]  Alexander Vladimirsky,et al.  Ordered Upwind Methods for Static Hamilton-Jacobi Equations: Theory and Algorithms , 2003, SIAM J. Numer. Anal..

[27]  O. Bokanowski,et al.  An efficient data structure to solve front propagation problems , 2008 .

[28]  Christopher M. Kuster,et al.  Computational Study of Fast Methods for the Eikonal Equation , 2005, SIAM J. Sci. Comput..

[29]  R. Kimmel,et al.  An efficient solution to the eikonal equation on parametric manifolds , 2004 .