Multiphysics simulation of corona discharge induced ionic wind

Ionic wind devices or electrostatic fluid accelerators are becoming of increasing interest as tools for thermal management, in particular for semiconductor devices. In this work, we present a numerical model for predicting the performance of such devices; its main benefit is the ability to accurately predict the amount of charge injected from the corona electrode. Our multiphysics numerical model consists of a highly nonlinear, strongly coupled set of partial differential equations including the Navier-Stokes equations for fluid flow, Poisson's equation for electrostatic potential, charge continuity, and heat transfer equations. To solve this system we employ a staggered solution algorithm that generalizes Gummel's algorithm for charge transport in semiconductors. Predictions of our simulations are verified and validated by comparison with experimental measurements of integral physical quantities, which are shown to closely match.

[1]  Carlo de Falco,et al.  Quantum-corrected drift-diffusion models: Solution fixed point map and finite element approximation , 2009, J. Comput. Phys..

[2]  Jean-Louis Coulomb,et al.  Numerical solution of the corona discharge problem based on mesh redefinition and test for a charge injection law , 2008 .

[3]  J. Remacle,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[4]  J. S. TOWNSEND The Conductivity produced in Gases by the Motion of Negatively–charged Ions , 1900, Nature.

[5]  Frank Steglich,et al.  Journal of Optoelectronics and Advanced Materials: Introduction , 2008 .

[6]  Lucian Dascalescu,et al.  2-D corona field computation in configurations with ionising and non-ionising electrodes , 2006 .

[7]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[8]  John H. Argyris,et al.  Computer Methods in Applied Mechanics and Engineering , 1990 .

[9]  Chieh-Tsan Hung,et al.  Implementation of Fuchs' model of ion diffusion charging of nanoparticles considering the electron contribution in dc-corona chargers in high charge densities , 2009 .

[10]  Koichi Oshima,et al.  Proceedings of the Fifth International Heat Pipe Conference , 1984 .

[11]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[12]  Ieee Industry,et al.  IEEE transactions on industry and general applications , 1965 .

[13]  Jungho Hwang,et al.  Velocity and energy conversion efficiency characteristics of ionic wind generator in a multistage configuration , 2010 .

[14]  Ion I. Inculet,et al.  Ozone Generation in Positive Corona Electrostatic Precipitators , 1969 .

[15]  K. Vafai,et al.  International Journal of Heat and Mass Transfer , 2013 .

[16]  Joseph W. Jerome Analysis of Charge Transport: A Mathematical Study of Semiconductor Devices , 1995 .

[17]  Chi-Chuan Wang,et al.  Heat transfer enhancement by needle-arrayed electrodes ― An EHD integrated cooling system , 2009 .

[18]  Jen-Shih Chang,et al.  Electrohydrodynamically induced flow direction in a wire-non-parallel plate electrode corona discharge , 2007 .

[19]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[20]  Riccardo Sacco,et al.  Global Weak Solutions for an Incompressible Charged Fluid with Multi-Scale Couplings: Initial-Boundary Value Problem , 2009 .

[21]  J.-L. Coulomb,et al.  Simulation of corona discharge in configurations with a sharp electrode , 2004 .

[22]  F. Peek Dielectric Phenomena in High Voltage Engineering , 2002 .

[23]  Suresh V. Garimella,et al.  Ionic winds for locally enhanced cooling , 2007 .

[24]  Lucian Dascalescu,et al.  Modelling of corona discharge in cylinder-wire-plate electrode configuration , 2006 .

[25]  E. Moreau,et al.  Enhancing the mechanical efficiency of electric wind in corona discharges , 2008 .

[26]  N.E. Jewell-Larsen,et al.  CFD analysis of electrostatic fluid accelerators for forced convection cooling , 2008, IEEE Transactions on Dielectrics and Electrical Insulation.

[27]  K. Adamiak,et al.  Corona discharge in the hyperbolic point-plane configuration: direct ionization criterion versus an approximate formulations , 2005, IEEE Transactions on Dielectrics and Electrical Insulation.

[28]  Alexander A. Berezin,et al.  Mechanism of electrohydrodynamically induced flow in a wire-non-parallel plate electrode type gas pump , 2009 .

[29]  Bruce Guenin,et al.  SEMICONDUCTOR THERMAL MEASUREMENT AND MANAGEMENT SYMPOSIUM , 1995 .

[30]  Riccardo Sacco,et al.  Stabilized 3D finite elements for the numerical solution of the Navier–Stokes equations in semiconductors , 2007 .

[31]  A.V. Mamishev,et al.  Design and optimization of electrostatic fluid accelerators , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[32]  Wil H. A. Schilders,et al.  Numerical methods in electromagnetics , 2005 .

[33]  Thomas Christen,et al.  Simulation of unipolar space charge controlled electric fields , 2007 .

[34]  J. Carifio,et al.  Nonlinear Analysis , 1995 .

[35]  A. Gosman,et al.  Solution of the implicitly discretised reacting flow equations by operator-splitting , 1986 .

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  Michel Havet,et al.  Effect of process parameters on the EHD airflow , 2009 .

[38]  Andrea L. Lacaita,et al.  Quantum-corrected drift-diffusion models for transport in semiconductor devices , 2005 .

[39]  Suresh V. Garimella,et al.  Simulation of ion generation and breakdown in atmospheric air , 2004 .

[40]  Yasuo Mori,et al.  EHD study of the corona wind between wire and plate electrodes , 1978 .

[41]  John L. Volakis Numerical Methods in Electromagnetics , 1999 .

[42]  Francesco Agostini,et al.  Electrically insulating two-phase cooling system , 2012, 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems.

[43]  P. Atten,et al.  Simulation of corona discharge in point–plane configuration , 2004 .

[44]  M. Havet,et al.  Analysis of the EHD enhancement of heat transfer in a flat duct , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[45]  Yildiz Bayazitoglu,et al.  International Journal of Heat and Mass Transfer , 2013 .

[46]  Rhétorique Lettres,et al.  Food and Bioprocess Technology , 2011 .

[47]  Suresh V. Garimella,et al.  Enhancement of external forced convection by ionic wind , 2008 .