Use of real-time extend GNSS for planting and inverting peanuts

Among the main techniques employed in precision agriculture, yield mapping and automatic guidance of agricultural machines are the best-known to farmers. The objective of this study was to evaluate, using statistical process control tools, the quality of automatic guidance using satellite signals, to reduce positioning errors and losses in peanut digging. The treatments consisted of the use of manual (operator guidance) and automatic (autopilot) guidance with RTX satellite signals in sowing and digging operations. The quality of the operation was evaluated after collection of 30 points spaced at 100 m for each quality indicator, which are the losses and the errors of alignment of the mechanised sets in sowing and digging operations. From the perspective of statistical control, manual guidance was shown to be compromised for the quality indicators of digging losses. Despite the instability in the sowing and digging operations, the use of automatic guidance proved to be accurate. The use of automatic guidance increases the precision and reduces overlaps (< 38 mm, as stipulated by the supplier) for sowing and digging. The manual sowing mean error between overlaps was stable; however, it did not remain constant over time.

[1]  H. J. Strangeways,et al.  WBMod assisted PLL GPS software receiver for mitigating scintillation affect in high latitude region , 2011, 2011 XXXth URSI General Assembly and Scientific Symposium.

[2]  Roger M. Hoy,et al.  Using a vision sensor system for performance testing of satellite-based tractor auto-guidance , 2010 .

[3]  J. Stanley Drexler,et al.  A Non-Destructive Method for Determining Peanut Pod Maturity , 1981 .

[4]  Carlos Eduardo Angeli Furlani,et al.  Effective power and hourly fuel consumption demanded by set tractor- coffee harvester in function of adequacy tractor ballasting , 2017 .

[5]  Gabriela de Oliveira Nascimento Brassarote,et al.  Avaliação do efeito da cintilação ionosférica e de diferentes intervalos de tempo de coleta de dados no posicionamento por ponto preciso na sua forma on-line , 2017 .

[6]  Chris Rizos,et al.  PPP versus DGNSS , 2012 .

[7]  E. van Santen,et al.  Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations , 2012, Precision Agriculture.

[8]  G. Vaccaro,et al.  Análise estatística da qualidade de níveis de tensão em sistemas de distribuição de energia elétrica , 2011 .

[9]  G. Seeber Satellite Geodesy: Foundations, Methods, and Applications , 1993 .

[10]  R. P. Silva,et al.  Quality of mechanized peanut digging in function of the auto guidance , 2016 .

[11]  Seweryn Lipiński,et al.  Precision of tractor operations with soil cultivation implements using manual and automatic steering modes , 2016 .

[12]  Fabio Alexandre Cavichioli,et al.  Perdas quantitativas de amendoim nos períodos do dia em sistemas mecanizados de colheita Pods losses during the mechanical harvesting of peanuts , 2014 .

[13]  Rouverson Pereira da Silva,et al.  TIMES OF EFFICIENCY AND QUALITY OF SOYBEAN CROP MECHANICAL OPERATION IN GEOMETRY FUNCTIONS OF PLOTS , 2017 .

[14]  F. Kumhála,et al.  Procedures of soil farming allowing reduction of compaction , 2011, Precision Agriculture.

[15]  David L. Jordan,et al.  RTK GPS and Automatic Steeringfor Peanut Digging , 2014 .

[16]  J. Molin,et al.  Uso de piloto automático na implantação de pomares de citros , 2011 .

[17]  A. Ince,et al.  EFFECTS OF GYNOPHORE BREAKING RESISTANCE ON LOSSES IN MECHANIZED PEANUT HARVESTING , 2003 .

[18]  Milan Kroulík,et al.  Large-scale field evaluation of driving performance and ergonomic effects of satellite-based guidance systems , 2013 .

[19]  C. Furlani,et al.  Statistical process control applied to mechanized peanut sowing as a function of soil texture , 2017, PloS one.

[20]  Yeong Sheng Tey,et al.  Factors influencing the adoption of precision agricultural technologies: a review for policy implications , 2012, Precision Agriculture.

[22]  E. S. Gervásio,et al.  USO DO INSTRUMENTO TDR PARA DETERMINAÇÃO DO TEOR DE ÁGUA EM DIFERENTES CAMADAS DE UM LATOSSOLO ROXO DISTRÓFICO , 1999 .

[23]  Fabio Henrique Rojo Baio,et al.  Avaliação da acurácia no direcionamento com piloto automático e contraste da capacidade de campo operacional no plantio mecanizado da cana-de-açúcar , 2011 .

[24]  Rouverson Pereira da Silva,et al.  Qualidade do corte basal de cana-de-açúcar efetuado por facas de diferentes angulações e revestimentos , 2017 .

[25]  Timo Oksanen Accuracy and Performance Experiences of Four Wheel Steered Autonomous Agricultural Tractor in Sowing Operation , 2013, FSR.

[26]  Rouverson Pereira da Silva,et al.  Produtividade e perdas de amendoim em cinco diferentes datas de arranquio , 2013 .

[27]  C. Furlani,et al.  Statistical control of processes aplied for peanut mechanical digging in soil textural classes , 2017 .

[28]  Manuel Perez-Ruiz,et al.  GNSS in Precision Agricultural Operations , 2012 .

[29]  G. Roberson Harvesting and curing peanuts , 1993 .