Presynaptic Control of Information Transmission in the Vertebrate Spinal Cord

[1]  I. Engberg,et al.  Evidence of two different mechanisms involved in the generation of presynaptic depolarization of afferent and rubrospinal fibers in the cat spinal cord , 1980, Brain Research.

[2]  D. Smith,et al.  Mechanisms of action potential propagation failure at sites of axon branching in the crayfish. , 1980, The Journal of physiology.

[3]  D. Jordan,et al.  Studies on the excitability of sinus nerve afferent terminals. , 1979, The Journal of physiology.

[4]  H. Fields,et al.  Segmental and descending influences on intraspinal thresholds of single C-fibers. , 1979, Journal of neurophysiology.

[5]  E R Kandel,et al.  Cellular mechanisms in the selection and modulation of behavior. , 1979, Neurosciences Research Program bulletin.

[6]  I. Parnas,et al.  Mechanisms involved in differential conduction of potentials at high frequency in a branching axon. , 1979, The Journal of physiology.

[7]  I. Parnas,et al.  Differential conduction block in branches of a bifurcating axon. , 1979, The Journal of physiology.

[8]  D. R. Curtis,et al.  Electrical interaction between motoneurons and afferent terminals in cat spinal cord. , 1979, Journal of neurophysiology.

[9]  J. Madrid,et al.  A method for the dynamic continuous estimation of excitability changes of single fiber terminals in the central nervous system , 1979, Neuroscience Letters.

[10]  G. Fischbach,et al.  Neurotransmitters decrease the calcium component of sensory neurone action potentials , 1978, Nature.

[11]  D. A. Brown,et al.  Axonal GABA-receptors in mammalian peripheral nerve trunks , 1978, Brain Research.

[12]  G. Clarke Iontophoresis and transmitter mechanisms in the mammalian central nervous system edited by R. W. Ryall and J. S. Kelly, Elsevier/North-Holland Biomedical Press, Amsterdam and New York, 1978. Dfl 145.00 $c3.25 (xv + 494 pages) ISBN 0444 800123 , 1978, Trends in Neurosciences.

[13]  E. Kandel,et al.  Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[14]  H. Higashi,et al.  Characterization and ionic basis of GABA‐induced depolarizations recorded in vitro from cat primary afferent neurones. , 1978, The Journal of physiology.

[15]  O. Calvillo Primary afferent depolarization of C fibres in the spinal cord of the cat. , 1978, Canadian journal of physiology and pharmacology.

[16]  A. Lundberg,et al.  Effects of 4-aminopyridine on transmission in excitatory and inhibitory synapses in the spinal cord , 1977, Brain Research.

[17]  H. Meves,et al.  The effect of internal and external 4‐aminopyridine on the potassium currents in intracellularly perfused squid giant axons , 1977, The Journal of physiology.

[18]  S. Thesleff,et al.  The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals. , 1977, European journal of pharmacology.

[19]  Douglas G. Stuart,et al.  Ensemble characterivstics ofcat locovmotionand its neural control , 1976, Progress in Neurobiology.

[20]  P. Feltz,et al.  GABA-induced rise of extracellular potassium in rat dorsal root ganglia: an electrophysiological study in vivo , 1976, Brain Research.

[21]  M. L. Shik,et al.  Neurophysiology of locomotor automatism. , 1976, Physiological reviews.

[22]  P. Rudomín,et al.  Ultrastructural observations in the frog spinal cord in relation to the generation of primary afferent depolarization , 1976, Neuroscience Letters.

[23]  G. Somjen,et al.  Extracellular potassium activity, intracellular and extracellular potential responses in the spinal cord. , 1975, The Journal of physiology.

[24]  P. Rudomín,et al.  Modulation of synaptic effectiveness of Ia and descending fibers in cat spinal cord. , 1975, Journal of neurophysiology.

[25]  P. Wall,et al.  Is there electrical interaction between motoneurons and afferent fibers in the spinal cord? , 1975, Brain Research.

[26]  L. Vyklický,et al.  Extracellular potassium changes in the spinal cord of the cat and their relation to slow potentials, active transport and impulse transmission. , 1975, The Journal of physiology.

[27]  S. Glusman Correlation between the topographical distribution of [3H]GABA uptake and primary afferent depolarization in the frog spinal cord , 1975, Brain Research.

[28]  R. Burke,et al.  Control by Preynaptic Correlation: a mechanism affecting information transmission from Ia fibers to motoneurons. , 1975, Journal of neurophysiology.

[29]  P. Rudomín,et al.  Presynaptic modulation of synaptic effectiveness of afferent and ventrolateral tract fibers in the frog spinal cord. , 1974, Experimental neurology.

[30]  M. Pelhate,et al.  Proceedings: Selective inhibition of potassium current in the giant axon of the cockroach. , 1974, The Journal of physiology.

[31]  R. Levy,et al.  GABA: a direct depolarizing action at the mammalian primary afferent terminal. , 1974, Brain research.

[32]  M. Rasminsky,et al.  A model for the mode of action of GABA on primary afferent terminals: depolarizing effects of GABA applied iontophoretically to neurones of mammalian dorsal root ganglia. , 1974, Neuropharmacology.

[33]  R. Burke,et al.  Primary afferent hyperpolarization and presynaptic facilitation of Ia afferent terminals induced by large cutaneous fibers. , 1974, Journal of neurophysiology.

[34]  L. Vyklický,et al.  Changes of of extracellular potassium concentration induced by neuronal activity in the spinal cord of the cat , 1974, The Journal of physiology.

[35]  W. Singer,et al.  Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus. , 1973, Brain research.

[36]  T. Hökfelt,et al.  Autoradiographic uptake patterns of (3H)GABA and (3H)glycine in central nervous tissues with special reference to the cat spinal cord. , 1973, Brain research.

[37]  P. B. Farel,et al.  Habituation of a monosynaptic response in vertebrate central nervous system: lateral column-motoneuron pathway in isolated frog spinal cord. , 1973, Journal of neurophysiology.

[38]  R. A. Davidoff,et al.  GABA-transaminase inhibitors and presynaptic inhibition in the amphibian spinal cord. , 1973, The American journal of physiology.

[39]  P. Rudomín,et al.  The organization of primary afferent depolarization in the isolated spinal cord of the frog , 1973, The Journal of physiology.

[40]  E. Anderson,et al.  The influence of semicarbazide-induced depletion of -aminobutyric acid on presynaptic inhibition. , 1972, Brain research.

[41]  Y. Miyata,et al.  Distribution of γ‐aminobutyric acid in cat spinal cord and the alteration produced by local ischaemia , 1972, Journal of neurochemistry.

[42]  R. Hinde,et al.  Short-Term Changes in Neural Activity and Behaviour , 1972 .

[43]  A. Cangiano,et al.  Presynaptic and postsynaptic inhibition of spinal motoneurons. , 1972, Journal of neurophysiology.

[44]  R. A. Davidoff The effects of bicuculline on the isolated spinal cord of the frog. , 1972, Experimental neurology.

[45]  R. A. Davidoff Gamma-Aminobutyric Acid Antagonism and Presynaptic Inhibition in the Frog Spinal Cord , 1972, Science.

[46]  S. Jabbur,et al.  The effects of depleting GABA on cuneate presynaptic inhibition. , 1971, Brain research.

[47]  D. R. Curtis,et al.  Bicuculline, an antagonist of GABA and synaptic inhibition in the spinal cord of the cat. , 1971, Brain research.

[48]  I. Engberg,et al.  Iontophoretic studies in Deiters' nucleus of the inhibitory actions of GABA and related amino acids and the interactions of strychnine and picrotoxin. , 1971, Brain research.

[49]  R. Dubner,et al.  Presynaptic excitability changes of primary afferent and corticofugal fibers projecting to trigeminal brain stem nuclei. , 1971, Experimental neurology.

[50]  R. Dubner Oral-facial sensory and motor mechanisms. , 1970, Science.

[51]  A. Grinnell Electrical interaction between antidromically stimulated frog motoneurones and dorsal root afferents: enhancement by gallamine and TEA , 1970, The Journal of physiology.

[52]  L. J. Goldberg,et al.  Centrifugal dorsal root discharges induced by motoneurone activation , 1970, The Journal of physiology.

[53]  W. Crill,et al.  Carotid sinus nerve: primary afferent depolarization evoked by hypothalamic stimulation. , 1969, Brain research.

[54]  V. J. Wilson,et al.  Comparison of effects of stimulation of Deiters' nucleus and medial longitudinal fasciculus on neck, forelimb, and hindlimb motoneurons. , 1969, Journal of neurophysiology.

[55]  P. Rudomín,et al.  A tetrodotoxin-resistant primary afferent depolarization. , 1969, Experimental neurology.

[56]  A. Niijima AFFERENT IMPULSE DISCHARGES FROM GLUCORECEPTORS IN THE LIVER OF THE GUINEA PIG , 1969, Annals of the New York Academy of Sciences.

[57]  K. Leibovic,et al.  Information Processing in The Nervous System , 1969, Springer Berlin Heidelberg.

[58]  J. Phillis,et al.  The use of convulsants in studying possible functions of amino acids in the toad spinal cord. , 1969, Comparative biochemistry and physiology.

[59]  K. Kuriyama,et al.  Biochemical-physiology correlations in studies of the γ-aminobutyric acid system , 1968 .

[60]  P. Rudomín Presynaptic inhibition induced by vagal afferent volleys. , 1967, Journal of neurophysiology.

[61]  I. Engberg,et al.  Primary afferent depolarization evoked from the brain stem and the cerebellum. , 1966, Archives italiennes de biologie.

[62]  M. Kuno Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones , 1964, The Journal of physiology.

[63]  R. Granit,et al.  ‘Adjacent’ and ‘remote’ post‐synaptic inhibition in motoneurones stimulated by muscle stretch , 1964, The Journal of physiology.

[64]  B. L. Ginsborg THE PHYSIOLOGY OF SYNAPSES , 1964 .

[65]  J. Eccles,et al.  Pharmacological studies on presynaptic inhibition , 1963, The Journal of physiology.

[66]  A. Lundberg,et al.  PRIMARY AFFERENT DEPOLARIZATION EVOKED FROM THE SENSORIMOTOR CORTEX. , 1963, Acta physiologica Scandinavica.

[67]  A. Paintal Vagal afferent fibres , 1962, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[68]  J. Eccles,et al.  Presynaptic Inhibitory Actions: Presynaptic Inhibition in the Cuneate Nucleus , 1962, Nature.

[69]  E. Gray A Morphological Basis for Pre-synaptic Inhibition? , 1962, Nature.

[70]  J. Eccles,et al.  Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys , 1961, The Journal of physiology.

[71]  F. Plum Handbook of Physiology. , 1960 .

[72]  J. Eccles,et al.  Presynaptic changes associated with post‐tetanic potentiation in the spinal cord , 1959, The Journal of physiology.

[73]  Karl Frank,et al.  Basic Mechanisms of Synaptic Transmission in the Central Nervous System , 1959 .

[74]  D. P. Lloyd POST-TETANIC POTENTIATION OF RESPONSE IN MONOSYNAPTIC REFLEX PATHWAYS OF THE SPINAL CORD , 1949, The Journal of general physiology.

[75]  D. H. Barron,et al.  The interpretation of potential changes in the spinal cord , 1938, The Journal of physiology.

[76]  D. H. Barron,et al.  Intermittent conduction in the spinal cord , 1935, The Journal of physiology.

[77]  J. Haycraft Upon the Production of Rapid Voluntary Movements , 1898, The Journal of physiology.

[78]  Y. Yaari,et al.  Post‐synaptic conductance increase associated with presynaptic inhibition in cat lumbar motoneurones. , 1980, The Journal of physiology.

[79]  R. Nicoll,et al.  Presynaptic inhibition: transmitter and ionic mechanisms. , 1979, International review of neurobiology.

[80]  Kandel Er Cellular insights into behavior and learning. , 1979 .

[81]  R. Čapek,et al.  Homosynaptic depression and transmitter turnover in spinal monosynaptic pathway. , 1977, Journal of neurophysiology.

[82]  Eugene Roberts,et al.  GABA in nervous system function , 1976 .

[83]  R. Llinás,et al.  Synaptic transmission in squid giant synapse after potassium conductance blockage with external 3- and 4-aminopyridine. , 1976, Biophysical journal.

[84]  R. Nicoll,et al.  The pharmacology and ionic dependency of amino acid responses in the frog spinal cord , 1973, The Journal of physiology.

[85]  R. Nicoll,et al.  Gamma-aminobutyric acid: role in primary afferent depolarization. , 1972, Science.

[86]  P. Rudomín,et al.  Changes in correlation between monosynaptic responses of single motoneurons and in information transmission produced by conditioning volleys to cutaneous nerves. , 1972, Journal of neurophysiology.

[87]  R. Schmidt Presynaptic inhibition in the vertebrate central nervous system. , 1971, Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie.

[88]  D. R. Curtis,et al.  Amino Acid Transmitters , 1970 .

[89]  G. A. Kerkut Experiments in physiology and biochemistry , 1968 .

[90]  S. Skoglund,et al.  Structure and function of inhibitory neuronal mechanisms , 1968 .

[91]  W D Willis,et al.  Depolarization of central terminals of Group I afferent fibres from muscle , 1962, The Journal of physiology.

[92]  K. Frank Presynaptic and postsynaptic inhibition of monosynaptic reflexes , 1957 .

[93]  W S McCULLOCH,et al.  Reflex inhibition by dorsal root interaction. , 1955, Journal of neurophysiology.