ATLASGAL – relationship between dense star-forming clumps and interstellar masers

We have used catalogues from several Galactic plane surveys and dedicated observations toinvestigate the relationship between various maser species and Galactic star forming clumps, as identified by the ATLASGAL survey. The maser transitions of interest are the 6.7 &12.2 GHz methanol masers, 22.2 GHz water masers, and the masers emitting in the fourground-state hyperfine structure transitions of hydroxyl. We find clump association rates for the water, hydroxyl and methanol masers to be 56, 39 and 82 per cent respectively, within the Galactic longitude range of 60◦ > ` > −60◦. We investigate the differences in physical parameters between maser associated clumps and the full ATLASGAL sample, and find that clumps coincident with maser emission are more compact with increased densities and luminosities. However, we find the physical conditions within the clumps are similar for the different maser species. A volume density threshold of n(H2) > 104.1 cm−3 for the 6.7 GHz methanol maser found in our previous study is shown to be consistent across for all maser species investigated. We find limits that are required for the production of maser emission to be 500 L and 6 M respectively. The evolutionary phase of maser associated clumps is investigated using the L/M ratio of clumps coincident with maser emission, and these have similar L/M ranges (∼ 100.2 − 102.7 L /M ) regardless of the associated transitions. This implies that the conditions required for the production of maser emission only occur during a relatively narrow period during a star’s evolution. Lower limits of the statistical lifetimes for each maser species are derived, ranging from ∼ 0.4 − 2×104 yrs and are in good agreement with the “straw man” evolutionary model previously presented.

[1]  G. Fuller,et al.  The evolutionary status of protostellar clumps hosting class II methanol masers , 2020, 2001.08449.

[2]  R. Klessen,et al.  OH maser emission in the THOR survey of the northern Milky Way , 2019, Astronomy & Astrophysics.

[3]  K. Menten,et al.  ATLASGAL – physical parameters of dust clumps associated with 6.7 GHz methanol masers , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  S. Molinari,et al.  Evolution of young protoclusters embedded in dense massive clumps. A new grid of population synthesis SED models and a new set of L/M evolutionary tracks , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  A. Walsh,et al.  Accurate OH Maser Positions. II. The Galactic Center Region , 2018, The Astrophysical Journal Supplement Series.

[6]  R. Klessen,et al.  Radio continuum emission in the northern Galactic plane: Sources and spectral indices from the THOR survey (Corrigendum) , 2018, Astronomy & Astrophysics.

[7]  G. Fuller,et al.  The 6-GHz multibeam maser survey III: comparison between the MMB and HOPS , 2017, 1711.07589.

[8]  Zhi-qiang Shen,et al.  A 6.7 GHz Methanol Maser Survey at High Galactic Latitudes , 2017, 1904.12489.

[9]  Hertfordshire,et al.  ATLASGAL - properties of a complete sample of Galactic clumps , 2017, 1709.00392.

[10]  K. Menten,et al.  ATLASGAL - Ammonia observations towards the southern Galactic Plane , 2017, 1708.07839.

[11]  L. J. Summers,et al.  The JCMT Plane Survey: first complete data release - emission maps and compact source catalogue , 2017, 1704.02982.

[12]  A. Walsh,et al.  ACCURATE OH MASER POSITIONS FROM THE SPLASH PILOT REGION , 2016, 1611.04270.

[13]  R. Klessen,et al.  The HI/OH/Recombination line survey of the inner Milky Way (THOR). Survey overview and data release 1 , 2016, 1609.03329.

[14]  Sylvia J. Zhu,et al.  FERMI-LAT OBSERVATIONS OF THE LIGO EVENT GW150914 , 2016 .

[15]  K. Menten,et al.  A PARALLAX-BASED DISTANCE ESTIMATOR FOR SPIRAL ARM SOURCES , 2016, 1604.02433.

[16]  S. Science,et al.  A search for water masers associated with class II methanol masers - II. Longitude range 341$^{\circ}$ to 6$^{\circ}$ , 2016, 1603.04602.

[17]  R. Klessen,et al.  Continuum sources from the THOR survey between 1 and 2 GHz , 2016, 1601.03427.

[18]  R. Klessen,et al.  A survey for hydroxyl in the THOR pilot region around W43 , 2015, 1510.06125.

[19]  Peter G. Martin,et al.  The JCMT Plane Survey: early results from the ℓ = 30° field , 2015, 1509.00318.

[20]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue - V. Galactic longitudes 20 ◦ -60 ◦ , 2015 .

[21]  K. Menten,et al.  The almost ubiquitous association of 6.7-GHz methanol masers with dust , 2014, 1410.6322.

[22]  K. Menten,et al.  ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde , 2017, 1711.10012.

[23]  S. Ellingsen,et al.  A search for water masers associated with class II methanol masers - I. Longitude range 6°-20° , 2014, 1407.1131.

[24]  Bordeaux,et al.  ATLASGAL --- Complete compact source catalogue: 280\degr\ $ <\ell <$ 60\degr , 2014, 1406.5741.

[25]  Leiden,et al.  ATLASGAL — towards a complete sample of massive star forming clumps ⋆ , 2014, 1406.5078.

[26]  Zhiqiang Shen,et al.  The catalogues and mid-infrared environment of Interstellar OH Masers , 2014, 1404.4677.

[27]  P. Hennebelle,et al.  SPLASH: the Southern Parkes Large-Area Survey in Hydroxyl – first science from the pilot region , 2013, 1312.5801.

[28]  G. Fuller,et al.  12.2-GHz methanol maser MMB follow-up catalogue – III. Longitude range 10° to 20° , 2013, 1312.5024.

[29]  S. Bontemps,et al.  The ATLASGAL survey: a catalog of dust condensations in the Galactic plane , 2013, 1312.0937.

[30]  P. Goldsmith,et al.  LOW VIRIAL PARAMETERS IN MOLECULAR CLOUDS: IMPLICATIONS FOR HIGH-MASS STAR FORMATION AND MAGNETIC FIELDS , 2013, 1308.5679.

[31]  Y. Contreras,et al.  Confirmation of the exclusive association between 6.7-GHz methanol masers and high-mass star formation regions , 2013, 1307.4453.

[32]  C. Phillips,et al.  Parkes full polarization spectra of OH masers – I. Galactic longitudes 350° through the Galactic Centre to 41° , 2013, 1402.2360.

[33]  Dublin Institute for Advanced Studies,et al.  ATLASGAL – environments of 6.7 GHz methanol masers , 2013, 1302.2538.

[34]  F. Motte,et al.  Ammonia from cold high-mass clumps discovered in the inner Galactic disk by the ATLASGAL survey , 2012, 1208.4848.

[35]  G. Fuller,et al.  12.2-GHz methanol maser Methanol Multibeam follow-up catalogue – II. Longitude range 186°–330° , 2012, 1207.5288.

[36]  G. Garay,et al.  SEARCH FOR IONIZED JETS TOWARD HIGH-MASS YOUNG STELLAR OBJECTS , 2012, 1204.6068.

[37]  G. Fuller,et al.  12.2-GHz methanol maser MMB follow-up catalogue – I. Longitude range 330° to 10° , 2012, 1201.1330.

[38]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue – IV. Galactic longitudes 186°–330° including the Orion–Monoceros region , 2012, 1201.0787.

[39]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue - III. Galactic longitudes 330° to 345° , 2011 .

[40]  Exeter,et al.  The RMS Survey: Ammonia and water maser analysis of massive star forming regions. ⋆ , 2011, 1107.3913.

[41]  S. Longmore,et al.  The H2O Southern Galactic Plane Survey (HOPS) – I. Techniques and H2O maser data , 2011, 1105.4663.

[42]  S. Ellingsen,et al.  Constraining the properties of 1.2-mm dust clumps that contain luminous water masers , 2011, 1105.1318.

[43]  S. Longmore,et al.  Accurate water maser positions from HOPS , 2010, 1405.4096.

[44]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue – II. Galactic longitudes 6° to 20° , 2010, 1007.3050.

[45]  G. Fuller,et al.  The 6-GHz methanol multibeam maser catalogue – I. Galactic Centre region, longitudes 345° to 6° , 2010, 1002.2475.

[46]  M. Sauvage,et al.  Hi-GAL: The Herschel Infrared Galactic Plane Survey , 2010, 1001.2106.

[47]  S. Ellingsen,et al.  12.2-GHz methanol masers towards 1.2-mm dust clumps: quantifying high-mass star formation evolutionary schemes , 2009, 0910.1223.

[48]  Jonathan P. Williams,et al.  THE BOLOCAM GALACTIC PLANE SURVEY. II. CATALOG OF THE IMAGE DATA , 2009, 0909.2871.

[49]  R. Indebetouw,et al.  The Spitzer/GLIMPSE Surveys: A New View of the Milky Way , 2009 .

[50]  A. Weiss,et al.  ATLASGAL - The APEX telescope large area survey of the galaxy at 870 μm , 2009, 0903.1369.

[51]  G. Fuller,et al.  The 6-GHz multibeam maser survey-I. Techniques , 2008, 0810.5201.

[52]  Eugene E. Haller,et al.  The large APEX bolometer camera LABOCA , 2008, Astronomical Telescopes + Instrumentation.

[53]  S. Molinari,et al.  The evolution of the spectral energy distribution in massive young stellar objects , 2008 .

[54]  K. Menten,et al.  A high-sensitivity 6.7 GHz methanol maser survey toward H2O sources , 2008, 0803.2232.

[55]  S. Ellingsen,et al.  Investigating high-mass star formation through maser surveys , 2007, Proceedings of the International Astronomical Union.

[56]  V. Minier,et al.  Millimetre continuum observations of southern massive star formation regions. I. SIMBA observations of cold cores , 2005, astro-ph/0506402.

[57]  J. V. D. Walt On the number and lifetime of 6.7-GHz methanol masers , 2005 .

[58]  K. Menten,et al.  Masers as signposts of high-mass protostars A water maser survey of methanol maser sources , 2005 .

[59]  M. Claussen Astronomical Masers , 2004, Science.

[60]  R. Cesaroni,et al.  The association between masers and outflows in massive star forming regions , 2004 .

[61]  J. Caswell OH 1720-MHz masers in southern star-forming regions , 2004 .

[62]  R. Norris,et al.  The protostellar mass limit for 6.7 GHz methanol masers. I. A low-mass YSO survey , 2003 .

[63]  A. Kus,et al.  6.7 GHz methanol masers at sites of star formation - A blind survey of the Galactic plane between 20°$\le l\le$ 40° and $|b|\le$ 0$\fdg$52 , 2002 .

[64]  K. Menten,et al.  CH3OH and H2O masers in high-mass star-forming regions , 2002, astro-ph/0205348.

[65]  P. Godfrey,et al.  Modelling methanol and hydroxyl masers in star-forming regions , 2002 .

[66]  Australia Telescope National Facility,et al.  Multitransition study and new detections of class II methanol masers , 2001, astro-ph/0101311.

[67]  K. Menten,et al.  Interstellar Hydroxyl Masers in the Galaxy. I. The VLA Survey , 2000 .

[68]  D. Frail,et al.  The Sizes of 1720 MHz OH Masers: VLBA and MERLIN Observations of the Supernova Remnants W44 and W28 , 1999, astro-ph/9904146.

[69]  Garry Robinson,et al.  Studies of ultracompact H ii regions — II. High-resolution radio continuum and methanol maser survey , 1998 .

[70]  C. Phillips Class II methanol masers and their environment at high resolution , 1998 .

[71]  R. Norris,et al.  Methanol Masers as Tracers of Circumstellar Disks , 1998, astro-ph/9806284.

[72]  S. Terebey,et al.  A Monthly Survey of Water Masers Associated with Low-Mass Stars , 1996 .

[73]  C. Masson,et al.  Expansion of W3(OH) , 1996, astro-ph/9808056.

[74]  K. Menten,et al.  VLBI observations of the 6.7 GHz methanol masers toward W3(OH) , 1992 .

[75]  F. Bertoldi,et al.  Pressure-confined clumps in magnetized molecular clouds , 1992 .

[76]  Karl M. Menten,et al.  The discovery of a new, very strong, and widespread interstellar methanol maser line , 1991 .

[77]  D. Hollenbach,et al.  H2O masers in star-forming regions , 1989 .

[78]  H. E. Matthews,et al.  Detection of strong methanol masers towards galactic H II regions , 1987, Nature.

[79]  M. Elitzur,et al.  OH-IR stars. II. A model for the 1612 MHz masers , 1976 .

[80]  W. Welch,et al.  Detection of Water in Interstellar Regions by its Microwave Radiation , 1969, Nature.

[81]  A. H. Barrett,et al.  Radio Observations of OH in the Interstellar Medium , 1963, Nature.

[82]  G. Kuiper The Empirical Mass-Luminosity Relation. , 1938 .

[83]  S. Bontemps,et al.  ATLASGAL – compact source catalogue: 330° < ℓ < 21° , 2013 .

[84]  D. Walt,et al.  Long-Term Monitoring of 6.7- and 12.2-Ghz Methanol Masers , 2005 .

[85]  A. Kus,et al.  12.2 GHz survey towards 6.7 GHz methanol masers. A comparison of 12.2 GHz and 6.7 GHz spectra , 2004 .