Insufficient autophagy relates to mitochondrial dysfunction, organ failure and adverse outcome in an animal model of critical illness

[1]  G. Van den Berghe,et al.  Mitochondrial fusion, fission, and biogenesis in prolonged critically ill patients. , 2012, The Journal of clinical endocrinology and metabolism.

[2]  G. Van den Berghe,et al.  Early versus Late Parenteral Nutrition in Critically Ill Adults , 2011, The New England journal of medicine.

[3]  M. Rosengart,et al.  Heme oxygenase‐1–mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice , 2011, Hepatology.

[4]  P. Pai,et al.  Complete Induction of Autophagy Is Essential for Cardioprotection in Sepsis , 2011, Annals of surgery.

[5]  J. Vincent,et al.  Is worsening multiple organ failure the cause of death in patients with severe sepsis?* , 2011, Critical care medicine.

[6]  P. Bénit,et al.  Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome , 2011, The Journal of cell biology.

[7]  Y. Yoon,et al.  Mitochondrial dynamics in diabetes. , 2011, Antioxidants & redox signaling.

[8]  Jan Gunst,et al.  Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. , 2011, The Journal of clinical endocrinology and metabolism.

[9]  F. Maltais,et al.  Mechanical ventilation-induced diaphragm disuse in humans triggers autophagy. , 2010, American journal of respiratory and critical care medicine.

[10]  Guido Kroemer,et al.  Autophagy and the integrated stress response. , 2010, Molecular cell.

[11]  M. Singer,et al.  Survival in critical illness is associated with early activation of mitochondrial biogenesis. , 2010, American journal of respiratory and critical care medicine.

[12]  P. Hasselgren,et al.  Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. , 2010, American journal of physiology. Regulatory, integrative and comparative physiology.

[13]  E. Arriaga,et al.  Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging. , 2010, Antioxidants & redox signaling.

[14]  A. Ceylan-isik,et al.  Cardiac overexpression of metallothionein rescues cardiac contractile dysfunction and endoplasmic reticulum stress but not autophagy in sepsis. , 2010, Journal of molecular and cellular cardiology.

[15]  G. Van den Berghe,et al.  Increasing intravenous glucose load in the presence of normoglycemia: Effect on outcome and metabolism in critically ill rabbits , 2010, Critical care medicine.

[16]  D. Metzger,et al.  Autophagy is required to maintain muscle mass. , 2009, Cell metabolism.

[17]  J. Windsor,et al.  A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. , 2009, Free radical biology & medicine.

[18]  D. Klionsky,et al.  Regulation mechanisms and signaling pathways of autophagy. , 2009, Annual review of genetics.

[19]  G. Van den Berghe,et al.  Hyperglycemic kidney damage in an animal model of prolonged critical illness. , 2009, Kidney international.

[20]  Miet Schetz,et al.  Intensive Insulin Therapy in Critically Ill Patients: NICE-SUGAR or Leuven Blood Glucose Target? , 2009 .

[21]  G. Van den Berghe,et al.  Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness , 2009, Critical care medicine.

[22]  Stephane Heritier,et al.  Intensive versus conventional glucose control in critically ill patients. , 2009, The New England journal of medicine.

[23]  R. Hotchkiss,et al.  Sepsis Induces Extensive Autophagic Vacuolization in Hepatocytes –a clinical and laboratory based study , 2009, Laboratory Investigation.

[24]  J. Timmons,et al.  Dysregulation of Mitochondrial Dynamics and the Muscle Transcriptome in ICU Patients Suffering from Sepsis Induced Multiple Organ Failure , 2008, PloS one.

[25]  R. Scarpulla Transcriptional paradigms in mammalian mitochondrial biogenesis and function. , 2008, Physiological reviews.

[26]  John L Cleveland,et al.  Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes , 2008, Autophagy.

[27]  Guido Kroemer,et al.  Autophagy in the Pathogenesis of Disease , 2008, Cell.

[28]  D. Chan,et al.  Functions and dysfunctions of mitochondrial dynamics , 2007, Nature Reviews Molecular Cell Biology.

[29]  M. Carraway,et al.  Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. , 2007, American journal of respiratory and critical care medicine.

[30]  M. Singer,et al.  Mechanisms of sepsis-induced organ dysfunction , 2007, Critical care medicine.

[31]  G. Van den Berghe,et al.  Effect of intensive insulin therapy on insulin sensitivity in the critically ill. , 2007, The Journal of clinical endocrinology and metabolism.

[32]  Yasushi Matsumura,et al.  The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress , 2007, Nature Medicine.

[33]  M. Vranic,et al.  Ubiquitinated-Protein Aggregates Form in Pancreatic β-Cells During Diabetes-Induced Oxidative Stress and Are Regulated by Autophagy , 2007, Diabetes.

[34]  J. Struck,et al.  Carbamoyl phosphate synthase-1: A marker of mitochondrial damage and depletion in the liver during sepsis , 2006, Critical care medicine.

[35]  G. Van den Berghe,et al.  Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. , 2006, Diabetes.

[36]  Ilse Vanhorebeek,et al.  Intensive insulin therapy protects the endothelium of critically ill patients. , 2005, The Journal of clinical investigation.

[37]  Masaaki Komatsu,et al.  Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice , 2005, The Journal of cell biology.

[38]  C. Wolf‐peeters,et al.  Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients , 2005, The Lancet.

[39]  Marco Novelli,et al.  Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. , 2004, American journal of physiology. Regulatory, integrative and comparative physiology.

[40]  J. Kline,et al.  Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. , 2004, Journal of molecular and cellular cardiology.

[41]  G. Van den Berghe,et al.  Metabolic, endocrine, and immune effects of stress hyperglycemia in a rabbit model of prolonged critical illness. , 2003, Endocrinology.

[42]  John Land,et al.  Association between mitochondrial dysfunction and severity and outcome of septic shock , 2002, The Lancet.

[43]  K. Nair,et al.  Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. , 2002, Diabetes.

[44]  G. Van den Berghe,et al.  A novel in vivo rabbit model of hypercatabolic critical illness reveals a biphasic neuroendocrine stress response. , 2002, Endocrinology.

[45]  B. Bistrian,et al.  Intensive insulin therapy in critically ill patients. , 2002, The New England journal of medicine.

[46]  T. Evans,et al.  Mechanisms of organ dysfunction in critical illness: report from a Round Table Conference held in Brussels , 2002, Intensive Care Medicine.

[47]  U. Pfeifer,et al.  Cellular autophagy in proximal tubules of early diabetic rats following insulin treatment and islet transplantation , 1992, Virchows Archiv. B, Cell pathology including molecular pathology.

[48]  Y. Habib,et al.  Serum electrolytes in diabetic patients and the effect of insulin treatment. , 1959, The Journal of the Egyptian Medical Association.