Temperature-Related Morphological Evolution of MoS2 Domains on Graphene and Electron Transfer within Heterostructures.

Other than the well-known sulfurization of molybdate compound to synthesize molybdenum disulfide (MoS2 ) layers, the dynamic process in the whole crystalline growth from nuclei to triangular domains has been rarely experimentally explored. Here, a competing sulfur-capture principle jointly with strict epitaxial mechanism is first proposed for the initial topography evolution and the final intrinsic highly oriented growth of triangular MoS2 domains with Mo or S terminations on the graphene (Gr) template. Additionally, potential distributions on MoS2 domains and bare Gr are presented to be different due to the charge transfer within heterostructures. The findings offer the mechanism of templated growth of 2D transition metal dichalcogenides, and provide general principles in syntheses of vertical 2D heterostructures that can be applied to electronics.

[1]  J. Nørskov,et al.  Edge termination of MoS2 and CoMoS catalyst particles , 2000 .

[2]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.

[3]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[4]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[5]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[6]  Lain‐Jong Li,et al.  Synthesis of Large‐Area MoS2 Atomic Layers with Chemical Vapor Deposition , 2012, Advanced materials.

[7]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[8]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[9]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[10]  P. Ajayan,et al.  Large Area Vapor Phase Growth and Characterization of MoS2 Atomic Layers on SiO2 Substrate , 2011, 1111.5072.

[11]  Jing Kong,et al.  Intrinsic structural defects in monolayer molybdenum disulfide. , 2013, Nano letters.

[12]  Yu Zhang,et al.  Epitaxial monolayer MoS2 on mica with novel photoluminescence. , 2013, Nano letters.

[13]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[14]  Deji Akinwande,et al.  High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.

[15]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[16]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[17]  Harish Bhaskaran,et al.  Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition , 2014 .

[18]  Wei Ruan,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[19]  J. Robinson,et al.  Large‐Area Synthesis of Continuous and Uniform MoS2 Monolayer Films on Graphene , 2014 .

[20]  Z. Yin,et al.  Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets. , 2014, Accounts of chemical research.

[21]  Weiwei Cai,et al.  Study on the diffusion mechanism of graphene grown on copper pockets. , 2015, Small.

[22]  Kenji Watanabe,et al.  Direct Growth of Single- and Few-Layer MoS2 on h-BN with Preferred Relative Rotation Angles. , 2015, Nano letters.

[23]  Oriol López Sánchez,et al.  Large-Area Epitaxial Monolayer MoS2 , 2015, ACS nano.

[24]  J. Robinson,et al.  Freestanding van der Waals heterostructures of graphene and transition metal dichalcogenides. , 2015, ACS nano.

[25]  Moon J. Kim,et al.  Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures , 2015, Nature Communications.

[26]  S. Seal,et al.  Recent development in 2D materials beyond graphene , 2015 .

[27]  Xiaoshuang Chen,et al.  Role of Chemical Potential in Flake Shape and Edge Properties of Monolayer MoS2 , 2015 .

[28]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[29]  Chongwu Zhou,et al.  Chemical Vapor Deposition Growth of Monolayer WSe2 with Tunable Device Characteristics and Growth Mechanism Study. , 2015, ACS nano.

[30]  Kazuhiro Yamamoto,et al.  Controlled van der Waals epitaxy of monolayer MoS2 triangular domains on graphene. , 2015, ACS applied materials & interfaces.

[31]  Moon J. Kim,et al.  Highly scalable, atomically thin WSe2 grown via metal-organic chemical vapor deposition. , 2015, ACS nano.

[32]  A. Ouerghi,et al.  Large area molybdenum disulphide- epitaxial graphene vertical Van der Waals heterostructures , 2016, Scientific Reports.

[33]  A. Ouerghi,et al.  Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures. , 2016, Nano letters.

[34]  M. Hersam,et al.  Rotationally Commensurate Growth of MoS2 on Epitaxial Graphene. , 2016, ACS nano.

[35]  A. Ouerghi,et al.  Bandgap inhomogeneity of MoS$_2$ monolayer on epitaxial graphene bilayer in van der Waals p-n junction , 2016 .

[36]  J. Warner,et al.  Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. , 2016, ACS nano.