Set-based design by simulation of usage scenario coverage

While the marketing literature has advocated for decades that new products should be designed for intended and anticipated consumer usages, the engineering literature mostly proposes optimisation of product performances independent of specific users’ skills, anticipated usage scenarios, and competing products in the market. In contrast to tedious market studies which assume an existing market experience for products and optimisation approaches based upon static product performances, we propose an adaptable approach to designing a product or product family: the set-based design by usage coverage simulation. It starts with generating a usage scenario space for a set of representative users. Next, considering a candidate set of products, one proceeds to the constraint satisfaction problem computations of feasible usage scenarios, assuming that physics-based models of performances are available. The comparison between the expected and feasible usage scenarios at the scale of a single user leads to Usage Coverage Indicators and finally to a preferred product which best covers the usage scenario space. At the level of a targeted consumer group, the approach provides a market share simulation for competing products or members of a scale-based product family. The design of a family of jigsaws thoroughly illustrates our approach.

[1]  Bernard Yannou,et al.  TRUSS DIMENSIONING WITH AN UNCERTAINTY REDUCTION PARADIGM , 2004 .

[2]  Bernard Yannou,et al.  Use of Constraint Programming for Design , 2006 .

[3]  Margaret F. Barton Conditional Logit Analysis of FCC Decisionmaking , 1979 .

[4]  William W. Finch,et al.  A SET-BASED SYSTEM FOR ELIMINATING INFEASIBLE DESIGNS IN ENGINEERING PROBLEMS DOMINATED BY UNCERTAINTY , 1997 .

[5]  M. J. Houston,et al.  Goal-Oriented Experiences and the Development of Knowledge , 1993 .

[6]  Jay D. Martin,et al.  The ARL Trade Space Visualizer: An Engineering Decision-Making Tool , 2004 .

[7]  Chandra R. Bhat,et al.  A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models , 2006 .

[8]  Luk Warlop,et al.  The Role of Usage Context in Consumer Choice: a Problem Solving Perspective , 1993 .

[9]  Kenneth E. Train,et al.  Discrete Choice Methods with Simulation , 2016 .

[10]  Yahia Lebbah,et al.  Accelerating filtering techniques for numeric CSPs , 2002, Artif. Intell..

[11]  Evon M. O. Abu-Taieh,et al.  Comparative Study , 2020, Definitions.

[12]  Deborah L Thurston,et al.  Fuzzy Ratings and Utility Analysis in Preliminary Design Evaluation of Multiple Attributes , 1992 .

[13]  Bernard Yannou,et al.  Computation of the Usage Contexts Coverage of a Jigsaw With CSP Techniques , 2010, DAC 2010.

[14]  Rajendra K. Srivastava,et al.  Usage-Situational Influences on Perceptions of Product-Markets: N theoretical and Empirical Issues , 1981 .

[15]  Catalina Vargas,et al.  Modélisation du processus de conception en ingénierie des systèmes mécaniques : mise en oeuvre basée sur la propagation de contraintes : application à la conception d'une culasse automobile , 1995 .

[16]  Kevin Otto,et al.  Propagating imprecise engineering design constraints , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[17]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[18]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[19]  Panos Y. Papalambros,et al.  The optimization paradigm in engineering design: promises and challenges , 2002, Comput. Aided Des..

[20]  Deborah L Thurston,et al.  A formal method for subjective design evaluation with multiple attributes , 1991 .

[21]  Pierre-Alain Yvars,et al.  Optimization of a passive structure for active vibration isolation: an interval-computation- and constraint-propagation-based approach , 2012 .

[22]  David L. Greene,et al.  TAFV Alternative Fuels and Vehicles Choice Model Documentation , 2001 .

[23]  Laurent Granvilliers,et al.  Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques , 2007, CP.

[24]  Julie S. Linsey,et al.  Effects of Product Usage Context on Consumer Product Preferences , 2005 .

[25]  Wei Chen,et al.  INCORPORATING CUSTOMER PREFERENCES AND MARKET TRENDS IN VEHICLE PACKAGE DESIGN , 2007, DAC 2007.

[26]  Boi Faltings,et al.  Arc-Consistency for Continuous Variables , 1994, Artif. Intell..

[27]  Ugo Montanari,et al.  Networks of constraints: Fundamental properties and applications to picture processing , 1974, Inf. Sci..

[28]  D. McFadden Conditional logit analysis of qualitative choice behavior , 1972 .

[29]  R. Belk An Exploratory Assessment of Situational Effects in Buyer Behavior , 1974 .

[30]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[31]  K. Train Discrete Choice Methods with Simulation , 2003 .

[32]  Beth E Allen On the aggregation of preferences in engineering design , 2001 .

[33]  Farrokh Mistree,et al.  Utility-based decision support for selection in engineering design , 2001 .

[34]  J. Jacoby,et al.  Consumer Behavior , 2024 .

[35]  Barton A. Weitz,et al.  Substitution in Use and the Role of Usage Context in Product Category Structures , 1991 .

[36]  Jean-Pierre Mathieu,et al.  Evaluating design as a system of representations: the moderating role of representation towards the use of new technologies, Book and CD , 2008 .

[37]  Jean-Yves Dantan,et al.  Set based robust design of mechanical systems using the quantifier constraint satisfaction algorithm , 2010, Eng. Appl. Artif. Intell..

[38]  Ernest Davis,et al.  Constraint Propagation with Interval Labels , 1987, Artif. Intell..

[39]  Peter R. Dickson Person-Situation: Segmentation's Missing Link , 1982 .

[40]  Khaled Hadj-Hamou,et al.  Product generic modelling for configuration: requirement analysis and modelling elements , 2003 .

[41]  Lan Luo,et al.  Product Line Design for Consumer Durables: An Integrated Marketing and Engineering Approach , 2011 .

[42]  Durairaj Maheswaran,et al.  The Influence of Consumers’ Lay Theories on Approach/Avoidance Motivation , 2009 .

[43]  E. Antonsson,et al.  USING INDIFFERENCE POINTS IN ENGINEERING DECISIONS , 2000 .

[44]  Donovan R. Hardenbrook,et al.  Ready, Set, Dominate: Implement Toyota's Set-Based Learning for Developing Products and Nobody Can Catch You! by Michael Kennedy, Kent Harmon, and Ed Minnock , 2009 .

[45]  Frédéric Benhamou,et al.  Continuous and Interval Constraints , 2006, Handbook of Constraint Programming.

[46]  Eric Bergman,et al.  Information appliances and beyond : interaction design for consumer products , 2000 .

[47]  Wei Chen,et al.  An Approach to Decision-Based Design With Discrete Choice Analysis for Demand Modeling , 2003 .

[48]  Gilles Roehrich,et al.  Le rôle de l'anticipation d'usage et de l'intention d'usage dans l'évaluation d'un nouveau produit , 2006 .

[49]  Durward K. Sobek,et al.  Set-based concurrent engineering and Toyota , 1994 .

[50]  Kristin L. Wood,et al.  PRODUCT USAGE CONTEXT: IMPROVING CUSTOMER NEEDS GATHERING AND DESIGN TARGET SETTING , 2004 .

[51]  Eva Onaindia,et al.  Planning and scheduling in an e-learning environment. A constraint-programming-based approach , 2008, Eng. Appl. Artif. Intell..

[52]  Bernard Yannou,et al.  A usage coverage based approach for assessing product family design Une méthode d'évaluation de la conception d'une famille de produits basée sur le modèle de couverture d'usages , 2012 .

[53]  J. Bettman An information processing theory of consumer choice , 1979 .

[54]  Daniel Jensen,et al.  Frontier Design: A Product Usage Context Method , 2006 .

[55]  E. Hirschman,et al.  The Experiential Aspects of Consumption: Consumer Fantasies, Feelings, and Fun , 1982 .

[56]  Bernard Yannou,et al.  A market segmentation process based on usage context , 2010 .

[57]  Frank S. Koppelman,et al.  Integrated Bayesian Hierarchical Choice Modeling to Capture Heterogeneous Consumer Preferences in Engineering Design , 2010 .

[58]  Bernard Yannou,et al.  Choice Modeling for Usage Context-Based Design , 2012 .

[59]  Paul E. Green,et al.  A General Approach to Product Design Optimization via Conjoint Analysis , 1981 .

[60]  Hélène Collavizza,et al.  Comparing Partial Consistencies , 1998, SCAN.

[61]  Tumasch Reichenbacher,et al.  Adaptive Methods for Mobile Cartography , 2003 .

[62]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[63]  Bernard Yannou,et al.  A New Framework for Collaborative Set-Based Design: Application to the Design Problem of a Hollow Cylindrical Cantilever Beam , 2011, DAC 2011.

[64]  Bernard Yannou,et al.  SIMULATION OF THE USAGE COVERAGE OF A GIVEN PRODUCT , 2010 .

[65]  Christopher Hoyle,et al.  A FRAMEWORK FOR CHOICE MODELING IN USAGE CONTEXT-BASED DESIGN , 2010, DAC 2010.

[66]  Bernard Yannou,et al.  A Comparative Study of Constraint Programming Techniques Over Intervals in Preliminary Design , 2004, DAC 2004.

[67]  Wei Chen,et al.  Usage Coverage Model for Choice Modeling: Principles , 2009, DAC 2009.

[68]  Moshe Ben-Akiva,et al.  Discrete Choice Analysis: Theory and Application to Travel Demand , 1985 .

[69]  Nathaniel S. Borenstein,et al.  IBM ® , 2009 .

[70]  Deepak Kumar,et al.  A hierarchical choice modelling approach for incorporating customer preferences in vehicle package design , 2009 .

[71]  E. Antonsson,et al.  The Method of Imprecision Compared to Utility Theory for Design Selection Problems , 1993 .

[72]  G. Haines,et al.  The Theory of Buyer Behavior. , 1970 .

[73]  Pierre-Alain Yvars Using constraint satisfaction for designing mechanical systems , 2008 .

[74]  R. Belk Situational Variables and Consumer Behavior , 1975 .