Circle Detection by Harmony Search Optimization

Automatic circle detection in digital images has received considerable attention over the last years in computer vision as several novel efforts aim for an optimal circle detector. This paper presents an algorithm for automatic detection of circular shapes considering the overall process as an optimization problem. The approach is based on the Harmony Search Algorithm (HSA), a derivative free meta-heuristic optimization algorithm inspired by musicians improvising new harmonies while playing. The algorithm uses the encoding of three points as candidate circles (harmonies) over the edge-only image. An objective function evaluates (harmony quality) if such candidate circles are actually present in the edge image. Guided by the values of this objective function, the set of encoded candidate circles are evolved using the HSA so that they can fit into the actual circles on the edge map of the image (optimal harmony). Experimental results from several tests on synthetic and natural images with a varying complexity range have been included to validate the efficiency of the proposed technique regarding accuracy, speed and robustness.

[1]  Zong Woo Geem,et al.  Novel derivative of harmony search algorithm for discrete design variables , 2008, Appl. Math. Comput..

[2]  Jing J. Liang,et al.  A local-best harmony search algorithm with dynamic sub-harmony memories for lot-streaming flow shop scheduling problem , 2011, Expert Syst. Appl..

[3]  Z. Geem Optimal cost design of water distribution networks using harmony search , 2006 .

[4]  M. Fesanghary,et al.  Combined heat and power economic dispatch by harmony search algorithm , 2007 .

[5]  Josef Kittler,et al.  A Comparative Study of Hough Transform Methods for Circle Finding , 1989, Alvey Vision Conference.

[6]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[7]  Siamak Talatahari,et al.  Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures , 2009 .

[8]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[9]  M. Tamer Ayvaz,et al.  Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm , 2007 .

[10]  Ari Visa,et al.  Comparison of Combined Shape Descriptors for Irregular Objects , 1997, BMVC.

[11]  J. IIVARINENHelsinki Efficiency of Simple Shape Descriptors , 1997 .

[12]  Darren J. Kerbyson,et al.  The Coherent Circle Hough Transform , 1993, BMVC.

[13]  Daniela Coltuc,et al.  From Hough transform to integral geometry [image processing] , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  Abolfazl Toroghi Haghighat,et al.  Harmony search based algorithms for bandwidth-delay-constrained least-cost multicast routing , 2008, Comput. Commun..

[16]  Martin D. Levine,et al.  Geometric Primitive Extraction Using a Genetic Algorithm , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Jerry Van Aken An Efficient Ellipse-Drawing Algorithm , 1984, IEEE Computer Graphics and Applications.

[18]  Josef Kittler,et al.  Robust estimation of shape parameters , 1990, BMVC.

[19]  Z. Geem Particle-swarm harmony search for water network design , 2009 .

[20]  Raúl Enrique Sánchez-Yáñez,et al.  Circle detection on images using genetic algorithms , 2006, Pattern Recognit. Lett..

[21]  Zong Woo Geem,et al.  Determination of viscoelastic and damage properties of hot mix asphalt concrete using a harmony search algorithm , 2009 .

[22]  Zong Woo Geem,et al.  Harmony search optimisation to the pump-included water distribution network design , 2009 .

[23]  D. Kerbyson,et al.  Using phase to represent radius in the coherent circle Hough transform , 1993 .

[24]  S. O. Degertekin Optimum design of steel frames using harmony search algorithm , 2008 .

[25]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[26]  Zong Woo Geem,et al.  Harmony Search Optimization: Application to Pipe Network Design , 2002 .

[27]  Doron Shaked,et al.  Deriving Stopping Rules for the Probabilistic Hough Transform by Sequential Analysis , 1996, Comput. Vis. Image Underst..

[28]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[29]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[30]  Jerry R. VanAken AnEfficient Ellipse-Drawing Algorithm , 1984 .

[31]  Halim Ceylan,et al.  Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey , 2008 .

[32]  Z. Geem Optimal Design of Water Distribution Networks Using Harmony Search , 2009 .

[33]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[34]  K. Lee,et al.  The harmony search heuristic algorithm for discrete structural optimization , 2005 .

[35]  M. Mahdavi,et al.  ARTICLE IN PRESS Available online at www.sciencedirect.com , 2007 .

[36]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[37]  Erkki Oja,et al.  A new curve detection method: Randomized Hough transform (RHT) , 1990, Pattern Recognit. Lett..

[38]  Kuo-Liang Chung,et al.  An Efficient Randomized Algorithm for Detecting Circles , 2001, Comput. Vis. Image Underst..

[39]  Oscar Cordón,et al.  Performance evaluation of memetic approaches in 3D reconstruction of forensic objects , 2008, Soft Comput..

[40]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[41]  Jack Bresenham,et al.  A linear algorithm for incremental digital display of circular arcs , 1977, CACM.

[42]  K. Lee,et al.  A new metaheuristic algorithm for continuous engineering optimization : harmony search theory and practice , 2005 .

[43]  Z. Geem,et al.  PARAMETER ESTIMATION OF THE NONLINEAR MUSKINGUM MODEL USING HARMONY SEARCH 1 , 2001 .

[44]  Zong Woo Geem,et al.  Application of Harmony Search to Vehicle Routing , 2005 .

[45]  Zong Woo Geem,et al.  Determination of individual sound power levels of noise sources using a harmony search algorithm , 2009 .

[46]  Luciano da Fontoura Costa,et al.  Shape Analysis and Classification: Theory and Practice , 2000 .

[47]  Pierluigi Crescenzi,et al.  Parallel Simulated Annealing for Shape Detection , 1995, Comput. Vis. Image Underst..

[48]  Ajith Abraham,et al.  Automatic circle detection on digital images with an adaptive bacterial foraging algorithm , 2010, Soft Comput..

[49]  Mark S. Nixon,et al.  Approaches to extending the Hough transform , 1989, International Conference on Acoustics, Speech, and Signal Processing,.

[50]  Marte Ramõ ´ rez-Ortegon Circle detection using discrete differential evolution optimization , 2011 .

[51]  Marte A. Ramírez-Ortegón,et al.  Circle detection using discrete differential evolution optimization , 2011, Pattern Analysis and Applications.

[52]  Jerry R. Van Aken An Efficient Ellipse-Drawing Algorithm , 1984, IEEE Computer Graphics and Applications.

[53]  Timothy Poston,et al.  Fuzzy Hough transform , 1994, Pattern Recognit. Lett..

[54]  K. Lee,et al.  A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice , 2005 .