Geometrical structures of FIR manifold and their application to multichannel blind deconvolution

We study geometrical structures on the manifold of FIR filters and their application to multichannel blind deconvolution. First we introduce the Lie group and Riemannian metric to the manifold of FIR filters. Then we derive the natural gradient on the manifold using the isometry of the Riemannian metric. Using the natural gradient, we present a novel learning algorithm for blind deconvolution based on the minimization of mutual information. We also study properties of the learning algorithm, such as equivariance and stability. Simulations are given to illustrate the effectiveness and validity of the proposed algorithm.

[1]  Y. Sato Two Extensional Applications of the Zero-Forcing Equalization Method , 1975, IEEE Trans. Commun..

[2]  D. Godard,et al.  Self-Recovering Equalization and Carrier Tracking in Two-Dimensional Data Communication Systems , 1980, IEEE Trans. Commun..

[3]  Lang Tong,et al.  Indeterminacy and identifiability of blind identification , 1991 .

[4]  Ehud Weinstein,et al.  Criteria for multichannel signal separation , 1994, IEEE Trans. Signal Process..

[5]  Lang Tong,et al.  Blind identification and equalization based on second-order statistics: a time domain approach , 1994, IEEE Trans. Inf. Theory.

[6]  Andrzej Cichocki,et al.  Robust learning algorithm for blind separation of signals , 1994 .

[7]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[8]  Chrysostomos L. Nikias,et al.  EVAM: an eigenvector-based algorithm for multichannel blind deconvolution of input colored signals , 1995, IEEE Trans. Signal Process..

[9]  Andrzej Cichocki,et al.  A New Learning Algorithm for Blind Signal Separation , 1995, NIPS.

[10]  Kari Torkkola,et al.  Blind separation of convolved sources based on information maximization , 1996, Neural Networks for Signal Processing VI. Proceedings of the 1996 IEEE Signal Processing Society Workshop.

[11]  Yingbo Hua,et al.  Previously Published Works Uc Riverside Title: Fast Maximum Likelihood for Blind Identification of Multiple Fir Channels Fast Maximum Likelihood for Blind Identification of Multiple Fir Channels , 2022 .

[12]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[13]  Andrzej Cichocki,et al.  Robust neural networks with on-line learning for blind identification and blind separation of sources , 1996 .

[14]  Shun-ichi Amari,et al.  Adaptive Online Learning Algorithms for Blind Separation: Maximum Entropy and Minimum Mutual Information , 1997, Neural Computation.

[15]  Shun-ichi Amari,et al.  Stability Analysis Of Adaptive Blind Source Separation , 1997 .

[16]  Shun-ichi Amari,et al.  Neural Network Models for Blind Separation of Time Delayed and Convolved Signals , 1997 .

[17]  S. Amari,et al.  Multichannel blind separation and deconvolution of sources with arbitrary distributions , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[18]  Jean-Francois Cardoso,et al.  Blind signal separation: statistical principles , 1998, Proc. IEEE.

[19]  Shun-ichi Amari,et al.  Adaptive blind signal processing-neural network approaches , 1998, Proc. IEEE.

[20]  Andrzej Cichocki,et al.  Blind deconvolution/equalization using state-space models , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[21]  Shun-ichi Amari,et al.  Natural Gradient Works Efficiently in Learning , 1998, Neural Computation.

[22]  Andrzej Cichocki,et al.  Multichannel blind deconvolution of non-minimum phase systems using information backpropagation , 1999, ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378).

[23]  Andrzej Cichocki,et al.  Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation , 2000, Neural Computation.

[24]  S. Amari Natural Gradient Works Eciently in Learning , 2022 .