Uncertainty of climate response to natural and anthropogenic forcings due to different land use scenarios

[1]  A. Eliseev Estimation of changes in characteristics of the climate and carbon cycle in the 21st century accounting for the uncertainty of terrestrial biota parameter values , 2011 .

[2]  A. Eliseev,et al.  Effect of including land-use driven radiative forcing of the surface albedo of land on climate response in the 16th–21st centuries , 2011 .

[3]  S. Gerber,et al.  Nitrogen cycling and feedbacks in a global dynamic land model , 2010 .

[4]  Pierre Friedlingstein,et al.  Carbon and nitrogen cycle dynamics in the O‐CN land surface model: 2. Role of the nitrogen cycle in the historical terrestrial carbon balance , 2010 .

[5]  Pierre Friedlingstein,et al.  Terrestrial nitrogen feedbacks may accelerate future climate change , 2010 .

[6]  Atul K. Jain,et al.  Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors , 2009 .

[7]  P. Ciais,et al.  Spatiotemporal patterns of terrestrial carbon cycle during the 20th century , 2009 .

[8]  M. Claussen,et al.  Effects of anthropogenic land cover change on the carbon cycle of the last millennium , 2009 .

[9]  Martijn Gough Climate change , 2009, Canadian Medical Association Journal.

[10]  A. Eliseev,et al.  Changes in climatic characteristics of Northern Hemisphere extratropical land in the 21st century: Assessments with the IAP RAS climate model , 2009 .

[11]  H. Matthews,et al.  Characterizing uncertainty in modeling primary terrestrial ecosystem processes , 2009 .

[12]  Harmonisation of global land-use scenarios for the period 1500–2100 for IPCC-AR5 , 2009 .

[13]  Sean C. Thomas,et al.  Increasing carbon storage in intact African tropical forests , 2009, Nature.

[14]  N. Zavalishin,et al.  Dynamics of a closed low-parameter compartment model of the global carbon cycle , 2008 .

[15]  A. Eliseev,et al.  Simulation of characteristics of thermal and hydrologic soil regimes in equilibrium numerical experiments with a climate model of intermediate complexity , 2008 .

[16]  A. Weaver,et al.  Carbon‐cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2 , 2008 .

[17]  Andrei P. Sokolov,et al.  Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle , 2008 .

[18]  A. Eliseev Estimation of the uncertainty of future changes in atmospheric carbon dioxide concentration and its radiative forcing , 2008 .

[19]  C. Field,et al.  A unifying framework for dinitrogen fixation in the terrestrial biosphere , 2008, Nature.

[20]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[21]  J. Pereira,et al.  Global wildland fire emissions from 1960 to 2000 , 2008 .

[22]  E. M. Volodin Methane cycle in the INM RAS climate model , 2008 .

[23]  Igor I. Mokhov,et al.  Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity , 2008 .

[24]  Alan Robock,et al.  20 reasons why geoengineering may be a bad idea , 2008 .

[25]  Carbon Balance and Management , 2008 .

[26]  A. Eliseev,et al.  Eventual saturation of the climate–carbon cycle feedback studied with a conceptual model , 2008 .

[27]  G. Fischer,et al.  Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity , 2008 .

[28]  Peter E. Thornton,et al.  Influence of carbon‐nitrogen cycle coupling on land model response to CO2 fertilization and climate variability , 2007 .

[29]  Markus Reichstein,et al.  CO2 balance of boreal, temperate, and tropical forests derived from a global database , 2007 .

[30]  A. Eliseev,et al.  Influence of direct sulfate-aerosol radiative forcing on the results of numerical experiments with a climate model of intermediate complexity , 2007 .

[31]  Atmosphere-ocean general circulation model with the carbon cycle , 2007 .

[32]  A. Eliseev,et al.  Carbon cycle–climate feedback sensitivity to parameter changes of a zero-dimensional terrestrial carbon cycle scheme in a climate model of intermediate complexity , 2007 .

[33]  A. Eliseev,et al.  Climate and carbon cycle variations in the 20th and 21st centuries in a model of intermediate complexity , 2007 .

[34]  A. Eliseev,et al.  Decadal–to–centennial scale climate–carbon cycle interactions from global climate models simulations forced by anthropogenic emissions , 2007 .

[35]  Thomas Hickler,et al.  Effects of human land-use on the global carbon cycle during the last 6,000 years , 2008 .

[36]  L. Horowitz Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal , 2006 .

[37]  T. Wigley,et al.  A Combined Mitigation/Geoengineering Approach to Climate Stabilization , 2006, Science.

[38]  Timothy M. Lenton,et al.  An efficient numerical terrestrial scheme (ENTS) for Earth system modelling , 2006 .

[39]  P. Crutzen Albedo Enhancement by Stratospheric Sulfur Injections: A Contribution to Resolve a Policy Dilemma? , 2006 .

[40]  Paul Steele,et al.  Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP , 2006 .

[41]  A. R. Price,et al.  Millennial timescale carbon cycle and climate change in an efficient Earth system model , 2006 .

[42]  A. Eliseev,et al.  Sensitivity of the IFA RAN Global Climatic Model with an interactive carbon cycle to anthropogenic influence , 2006 .

[43]  Maosheng Zhao,et al.  Sensitivity of Moderate Resolution Imaging Spectroradiometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses , 2006 .

[44]  Chris D. Jones,et al.  Climate-carbon cycle feedbacks under stabilization: uncertainty and observational constraints , 2006 .

[45]  D. Etheridge,et al.  Law Dome CO 2 , CH 4 and N 2 O ice core records extended to 2000 years , 2006 .

[46]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[47]  M. Claussen,et al.  EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling , 2005 .

[48]  J. Lean,et al.  Modeling the Sun’s Magnetic Field and Irradiance since 1713 , 2005 .

[49]  A. Weaver,et al.  Terrestrial Carbon Cycle Dynamics under Recent and Future Climate Change , 2005 .

[50]  Climate Changes and Their Assessment Based on the IAP RAS Global Model Simulations , 2005 .

[51]  Peter M. Cox,et al.  Climate feedback from wetland methane emissions , 2004 .

[52]  Stephen Sitch,et al.  Role of land cover changes for atmospheric CO2 increase and climate change during the last 150 years , 2004 .

[53]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[54]  I. Fung,et al.  CO2 seasonality indicates origins of post‐Pinatubo sink , 2004 .

[55]  J. Blanchet,et al.  A parametrization of solar energy disposition in the climate system , 2004 .

[56]  Nathan P. Gillett,et al.  Natural and anthropogenic climate change: incorporating historical land cover change, vegetation dynamics and the global carbon cycle , 2004 .

[57]  V. B. Leonova,et al.  The Mechanism of Cross-Linking of Fibrinogen and Its Early Structural Homolog—XFragment , 2001, Biology Bulletin of the Russian Academy of Sciences.

[58]  Modeling the Values of Net Primary Production for the Zonal Vegetation of European Russia , 2001, Biology Bulletin of the Russian Academy of Sciences.

[59]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[60]  A. Whitea,et al.  An analysis of some diverse approaches to modelling terrestrial net primary productivity , 2004 .

[61]  J. Randerson,et al.  Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings , 2003 .

[62]  C. Tucker,et al.  Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999 , 2003, Science.

[63]  Charles S. Zender,et al.  A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate , 2003 .

[64]  Dennis D. Baldocchi,et al.  Response of a Deciduous Forest to the Mount Pinatubo Eruption: Enhanced Photosynthesis , 2003, Science.

[65]  Victor Brovkin,et al.  Carbon cycle, vegetation, and climate dynamics in the Holocene: Experiments with the CLIMBER‐2 model , 2002 .

[66]  M. Noguer,et al.  Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2002 .

[67]  J. Houghton,et al.  Climate change 2001 : the scientific basis , 2001 .

[68]  E. Mosley‐Thompson,et al.  Hypothesized climate forcing time series for the last 500 years , 2001 .

[69]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[70]  J. Dufresne,et al.  Positive feedback between future climate change and the carbon cycle , 2001 .

[71]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[72]  P. Cox,et al.  Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2 , 2001 .

[73]  P. Jones,et al.  Ascribing potential causes of recent trends in free atmosphere temperatures , 2001 .

[74]  Peter M. Cox,et al.  Description of the "TRIFFID" Dynamic Global Vegetation Model , 2001 .

[75]  H. Storch,et al.  Extending North Atlantic Oscillation reconstructions back to 1500 , 2001 .

[76]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[77]  R. Weiss,et al.  Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC‐11 CFC‐12, CFC‐113, and carbon tetrachloride , 2000 .

[78]  R. B. Jackson,et al.  THE VERTICAL DISTRIBUTION OF SOIL ORGANIC CARBON AND ITS RELATION TO CLIMATE AND VEGETATION , 2000 .

[79]  V. Petoukhov,et al.  Decadal climate variability in a coupled atmosphere‐ocean climate model of moderate complexity , 1999 .

[80]  Christopher B. Field,et al.  Combining satellite data and biogeochemical models to estimate global effects of human‐induced land cover change on carbon emissions and primary productivity , 1999 .

[81]  A. Bondeau,et al.  Comparing global models of terrestrial net primary productivity (NPP): overview and key results , 1999 .

[82]  H. J. Schellnhuber,et al.  Optimisation of reduction of global CO2 emission based on a simple model of the carbon cycle , 1999 .

[83]  H. Storch,et al.  Anthropogenic climate change , 1999 .

[84]  W. Bloh,et al.  A zero-dimensional climate-vegetation model containing global carbon and hydrological cycle , 1998 .

[85]  Climate, vegetation, and global carbon cycle: the simplest zero-dimensional model , 1997 .

[86]  C. D. Keeling,et al.  Increased activity of northern vegetation inferred from atmospheric CO2 measurements , 1996, Nature.

[87]  F. Millero Thermodynamics of the carbon dioxide system in the oceans , 1995 .

[88]  R. Leemans,et al.  Comparing global vegetation maps with the Kappa statistic , 1992 .

[89]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[90]  R. Sepanski,et al.  TRENDS '90: A compendium of data on global change , 1991 .

[91]  G. Woodwell,et al.  Changes in the Carbon Content of Terrestrial Biota and Soils between 1860 and 1980: A Net Release of CO"2 to the Atmosphere , 1983 .