Random path method with pivoting for computing permanents of matrices

The permanent of matrix is important in mathematics and applications. Its computation, however, is #P-complete. Randomized algorithms are natural consideration to deal with such kind of problems. A Monte Carlo algorithm for approximating permanents of matrices is proposed in this paper, which improves a method by Rasmussen. Mathematical analysis and numerical computations show the efficiency of the method.

[1]  Steve Chien,et al.  Clifford algebras and approximating the permanent , 2003, J. Comput. Syst. Sci..

[2]  H. E. Slaught THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .

[3]  A. Sinclair,et al.  Approximating the number of monomer-dimer coverings of a lattice , 1996 .

[4]  P. Zizler Norms of sampling operators , 1998 .

[5]  Mark Jerrum An analysis of a Monte Carlo algorithm for estimating the permanent , 1993, IPCO.

[6]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[7]  Fengshan Bai,et al.  An upper bound for the permanent of (0,1)-matrices , 2004 .

[8]  Lin Yu-qing,et al.  Matching polynomial of graph , 2007 .

[9]  Phillip A. Ostrand Systems of distinct representatives, II , 1970 .

[10]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[11]  Andrew G. Glen,et al.  APPL , 2001 .

[12]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[13]  Andrei Z. Broder,et al.  How hard is it to marry at random? (On the approximation of the permanent) , 1986, STOC '86.

[14]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[15]  Lars Eilstrup Rasmussen,et al.  Approximating the Permanent: A Simple Approach , 1994, Random Struct. Algorithms.

[16]  Dorit S. Hochbaum,et al.  Approximation Algorithms for NP-Hard Problems , 1996 .

[17]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with non-negative entries , 2001, STOC '01.

[18]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[19]  Mark Jerrum,et al.  The Markov chain Monte Carlo method: an approach to approximate counting and integration , 1996 .

[20]  Albert Nijenhuis,et al.  Combinatorial Algorithms for Computers and Calculators , 1978 .

[21]  Richard J. Lipton,et al.  A Monte-Carlo Algorithm for Estimating the Permanent , 1993, SIAM J. Comput..