Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide

[1]  P. A. Peterson,et al.  Crystal structures of two viral peptides in complex with murine MHC class I H-2Kb. , 1994, Science.

[2]  J. Sacchettini,et al.  The three-dimensional structure of H-2Db at 2.4 Å resolution: Implications for antigen-determinant selection , 1994, Cell.

[3]  D. Wiley,et al.  The antigenic identity of peptide-MHC complexes: A comparison of the conformations of five viral peptides presented by HLA-A2 , 1993, Cell.

[4]  V. Gnau,et al.  Natural peptide ligand motifs of two HLA molecules associated with myasthenia gravis. , 1993, International immunology.

[5]  M F del Guercio,et al.  HLA DR4w4-binding motifs illustrate the biochemical basis of degeneracy and specificity in peptide-DR interactions. , 1993, Journal of immunology.

[6]  D. Wiley,et al.  Comparison of the P2 specificity pocket in three human histocompatibility antigens: HLA-A*6801, HLA-A*0201, and HLA-B*2705. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[7]  K. Sakaguchi,et al.  Two-dimensional nuclear magnetic resonance analysis of a labeled peptide bound to a class II major histocompatibility complex molecule. , 1993, Journal of molecular biology.

[8]  F. Sinigaglia,et al.  Promiscuous and allele-specific anchors in HLA-DR-binding peptides , 1993, Cell.

[9]  D. Wiley,et al.  Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1 , 1993, Nature.

[10]  D. G. Morris,et al.  Common ring motifs in proteins involving asparagine or glutamine amide groups hydrogen-bonded to main-chain atoms. , 1993, Journal of molecular biology.

[11]  F. Koning,et al.  HLA‐DRβ chain residue 86 controls DRαβ dimer stability , 1993 .

[12]  D. Eckels,et al.  Differential effect of polymorphism at HLA-DR1 beta-chain positions 85 and 86 on binding and recognition of DR1-restricted antigenic peptides. , 1993, Journal of immunology.

[13]  Antonio Lanzavecchia,et al.  The set of naturally processed peptides displayed by DR molecules is tuned by polymorphism of residue 86 , 1993, European journal of immunology.

[14]  P. Parham,et al.  Position 71 in the α helix of the DRβ domain is predicted to influence peptide binding and plays a central role in allorecognition , 1993 .

[15]  J. Berzofsky,et al.  The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. , 1993, Journal of immunology.

[16]  J. Sidney,et al.  Functional consequences of engagement of the T cell receptor by low affinity ligands. , 1993, Journal of immunology.

[17]  Don C. Wiley,et al.  Atomic structure of a human MHC molecule presenting an influenza virus peptide , 1992, Nature.

[18]  J. Drijfhout,et al.  Functional analysis of DR17(DR3)-restricted mycobacterial T cell epitopes reveals DR17-binding motif and enables the design of allele-specific competitor peptides. , 1992, Journal of immunology.

[19]  Charles A. Janeway,et al.  Truncation variants of peptides isolated from MHC class II molecules suggest sequence motifs , 1992, Nature.

[20]  F. Sinigaglia,et al.  Identification of a motif for HLA-DR1 binding peptides using M13 display libraries , 1992, The Journal of experimental medicine.

[21]  Dean R. Madden,et al.  The three-dimensional structure of HLA-B27 at 2.1 Å resolution suggests a general mechanism for tight peptide binding to MHC , 1992, Cell.

[22]  J. Sacchettini,et al.  Crystal structure of the major histocompatibility complex class I H-2Kb molecule containing a single viral peptide: implications for peptide binding and T-cell receptor recognition. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[23]  William S. Lane,et al.  Predominant naturally processed peptides bound to HLA-DR1 are derived from MHC-related molecules and are heterogeneous in size , 1992, Nature.

[24]  P. A. Peterson,et al.  Emerging principles for the recognition of peptide antigens by MHC class I molecules. , 1992, Science.

[25]  D. Wiley,et al.  Peptide binding to the major histocompatibility complex molecules: Current Opinion in Structural Biology 1992, 2:300–304 , 1992 .

[26]  R. Henderson,et al.  Characterization of peptides bound to the class I MHC molecule HLA-A2.1 by mass spectrometry. , 1992, Science.

[27]  D. Wiley,et al.  The human class II MHC protein HLA-DR1 assembles as empty αβ heterodimers in the absence of antigenic peptide , 1992, Cell.

[28]  C Oseroff,et al.  On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. , 1991, Journal of immunology.

[29]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[30]  D. R. Madden,et al.  Identification of self peptides bound to purified HLA-B27 , 1991, Nature.

[31]  D. R. Madden,et al.  The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation , 1991, Nature.

[32]  J. Rothbard,et al.  Effect of natural polymorphism at residue 86 of the HLA-DR beta chain on peptide binding. , 1991, Journal of immunology.

[33]  P Wordsworth,et al.  Critical role for the Val/Gly86 HLA-DR beta dimorphism in autoantigen presentation to human T cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[34]  H. Rammensee,et al.  Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules , 1991, Nature.

[35]  J. Sidney,et al.  Single amino acid changes in DR and antigen define residues critical for peptide-MHC binding and T cell recognition. , 1991, Journal of immunology.

[36]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[37]  A Sette,et al.  Truncation analysis of several DR binding epitopes. , 1991, Journal of immunology.

[38]  D. Wiley,et al.  Peptide binding to HLA‐DR1: a peptide with most residues substituted to alanine retains MHC binding. , 1990, The EMBO journal.

[39]  P. Fitzgerald MERLOT, an integrated package of computer programs for the determination of crystal structures by molecular replacement , 1988 .

[40]  D. Wiley,et al.  A hypothetical model of the foreign antigen binding site of Class II histocompatibility molecules , 1988, Nature.

[41]  M. A. Saper,et al.  Structure of the human class I histocompatibility antigen, HLA-A2 , 1987, Nature.

[42]  Mike Carson,et al.  Ribbon models of macromolecules , 1987 .

[43]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[44]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .

[45]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[46]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .

[47]  R. Germain,et al.  The biochemistry and cell biology of antigen processing and presentation. , 1993, Annual review of immunology.

[48]  M. Davis,et al.  Molecular components of T-cell recognition. , 1992, Annual review of immunology.

[49]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[50]  J. Rothbard,et al.  Interactions between Immunogenic Peptides and MHC Proteins , 1991 .