Nanomagnetism and spin electronics: materials, microstructure and novel properties

We present an overview of the critical issues of current interest in magnetic and magnetoelectronic materials. A broad demonstration of the successful blend of materials synthesis, microstructural evolution and control, new physics and novel applications that is central to research in this field is presented. The critical role of size, especially at the nanometer length scale, dimensionality, as it pertains to thin films and interfaces, and the overall microstructure, in determining a range of fundamental properties and potential applications, is emphasized. Even though the article is broad in scope, examples are drawn mainly from our recent work in magnetic nanoparticles and core-shell structures, exchange, proximity and interface effects in thin film heterostructures, and dilute magnetic dielectrics, a new class of materials for spin electronics applications.

[1]  K. Krishnan,et al.  Optimization of magnetic properties of nanostructured Nd-Fe-B : Approaching ideal stoner-wohlfarth behaviour , 2001 .

[2]  H. Ohldag,et al.  Direct imaging of asymmetric magnetization reversal in exchange-biased Fe/MnPd bilayers by x-ray photoemission electron microscopy. , 2005, Physical review letters.

[3]  I. Schuller,et al.  Scaling of the interface roughness in Fe-Cr superlattices: self-affine versus non-self-affine. , 2002, Physical review letters.

[4]  Ulrike Diebold,et al.  Epitaxial growth and properties of ferromagnetic co-doped TiO2 anatase , 2001 .

[5]  Transition from granular to dilute magnetic semiconducting multilayers in ion-beam-deposited ZnO/Co , 2003 .

[6]  W. D. Jonge,et al.  Magnetic interface anisotropy in Pd/Co and Pd/Fe multilayers , 1987 .

[7]  Studies of two- and three-dimensional ZnO:Co structures through different synthetic routes , 2004 .

[8]  M. Varela,et al.  Direct evidence for block-by-block growth in high-temperature superconductor ultrathin films. , 2001, Physical review letters.

[9]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[10]  E. Kneller,et al.  The exchange-spring magnet: a new material principle for permanent magnets , 1991 .

[11]  J. Coey,et al.  Applying Permanent Magnets , 1996 .

[12]  Paul E. Sheehan,et al.  Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors , 2003 .

[13]  L. Néel Anisotropie magnétique superficielle et surstructures d'orientation , 1954 .

[14]  M. J. Reed,et al.  Room temperature ferromagnetic properties of (Ga, Mn)N , 2001 .

[15]  R. E. Rosensweig,et al.  Heating magnetic fluid with alternating magnetic field , 2002 .

[16]  T. C. Lubensky Soft condensed matter physics , 1997 .

[17]  Min‐Sik Park,et al.  Electronic structures of doped anatase TiO 2 : Ti 1 − x M x O 2 ( M = Co , Mn, Fe, Ni) , 2002, cond-mat/0202118.

[18]  L. G. Parratt Surface Studies of Solids by Total Reflection of X-Rays , 1954 .

[19]  G. Schmidt,et al.  Electrical spin injection using dilute magnetic semiconductors , 2001 .

[20]  C. M. Wang,et al.  Intrinsic ferromagnetism in insulating cobalt doped anatase TiO2. , 2005, Physical review letters.

[21]  Hugo Ferreira,et al.  Planar Hall effect sensor for magnetic micro- and nanobead detection , 2004 .

[22]  K. Krishnan,et al.  Magnetization processes in exchange-biased MnPd/Fe bilayers , 2003 .

[23]  K. Krishnan,et al.  Growth of exchange-biased MnPd/Fe bilayers , 2004 .

[24]  Chong-Min Wang,et al.  Cobalt-doped anatase TiO2: A room temperature dilute magnetic dielectric material , 2005 .

[25]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[26]  C. P. Bean Hysteresis Loops of Mixtures of Ferromagnetic Micropowders , 1955 .

[27]  C. Lucas,et al.  Microstructure and magnetic anisotropy of ultrathin Co/Pt multilayers grown on GaAs (1̄1̄1̄) by molecular-beam epitaxy , 1992 .

[28]  S. Sarma,et al.  High temperature ferromagnetism with a giant magnetic moment in transparent co-doped SnO(2-delta). , 2003, Physical review letters.

[29]  A. B. Pakhomov,et al.  Controlled crystalline structure and surface stability of cobalt nanocrystals. , 2005, The journal of physical chemistry. B.

[30]  G. Wang,et al.  A simple ultrahigh vacuum surface magneto‐optic Kerr effect setup for the study of surface magnetic anisotropy , 1990 .

[31]  Masashi Kawasaki,et al.  Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide , 2001, Science.

[32]  Ning Cheng,et al.  Epitaxial growth and exchange biasing of PdMn/Fe bilayers grown by ion-beam sputtering , 2001 .

[33]  K. Krishnan,et al.  Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia , 2005 .

[34]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[35]  A. Kellock,et al.  Exchange biasing and interface structure in MnNi/Fe(Mo) bilayers , 2000 .

[36]  P. Sheng Feature article: Electronic transport in granular metal films† , 1992 .

[37]  K. Krishnan,et al.  Magnetization processes in exchange-biased MnPd∕Fe bilayers studied by polarized neutron reflectivity , 2004 .

[38]  Schuller,et al.  Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration , 2000, Physical review letters.

[39]  A. B. Pakhomov,et al.  Effects of surfactant friction on Brownian magnetic relaxation in nanoparticle ferrofluids , 2005 .

[40]  B. Scaife,et al.  The measurement of the frequency dependent susceptibility of magnetic colloids , 1988 .

[41]  Tomoji Kawai,et al.  Magnetic and electric properties of transition-metal-doped ZnO films , 2001 .

[42]  Kannan M. Krishnan,et al.  Preparation of functionalized and gold-coated cobalt nanocrystals for biomedical applications , 2005 .

[43]  B. Jonker,et al.  Electrical Spin Injection and Transport in Semiconductor Spintronic Devices , 2003 .

[44]  M. Venkatesan,et al.  Ferromagnetism in Fe-doped SnO2 thin films , 2004, cond-mat/0401293.

[45]  D. Attwood,et al.  A full field transmission X-ray microscope as a tool for high-resolution magnetic imaging , 2001 .

[46]  A. B. Pakhomov,et al.  A general approach to synthesis of nanoparticles with controlled morphologies and magnetic properties , 2005 .

[47]  B. Terris,et al.  Magnetic imaging of ion-irradiation patterned Co/Pt multilayers using complementary electron and photon probes , 2001 .

[48]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[49]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[50]  A. B. Pakhomov,et al.  Room-temperature magnetism in Cr-doped AlN semiconductor films , 2002 .

[51]  Berger,et al.  Nonequilibrium magnetization near the reorientation phase transition of Fe/Ag(100) films. , 1996, Physical Review Letters.

[52]  Synthesis, characterization, and modeling of high quality ferromagnetic Cr-doped AlN thin films , 2002, cond-mat/0212459.

[53]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[54]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[55]  K. Krishnan,et al.  Controlled self-assembly of colloidal cobalt nanocrystals , 2003 .

[56]  Yihong Wu,et al.  Epitaxial growth of ferromagnetic Co:TiO2 thin films by co-sputtering , 2004 .

[57]  J. Connolly,et al.  Proposed biosensors based on time-dependent properties of magnetic fluids , 2001 .

[58]  John Casimir Slonczewski,et al.  Overview of interlayer exchange theory , 1995 .

[59]  G. Xiao,et al.  Extraordinary Hall effect in (111) and (100)-orientated Co/Pt superlattices , 1997 .

[60]  L. M. Falicov,et al.  Surface, interface, and thin-film magnetism , 1990 .

[61]  K. Krishnan,et al.  Interlayer perpendicular domain coupling between thin Fe films and garnet single-crystal underlayers , 2004 .

[62]  Howard A. Padmore,et al.  X-ray photoemission electron microscopy, a tool for the investigation of complex magnetic structures. , 2001 .

[63]  R. M. Wolf,et al.  Perpendicular Coupling in Exchange-Biased Fe 3 O 4 /CoO Superlattices , 1998 .

[64]  A. B. Pakhomov,et al.  Ferromagnetic Cr-doped ZnO for spin electronics via magnetron sputtering , 2005 .

[65]  Everett E. Carpenter,et al.  Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly , 2001 .

[66]  Unconventional carrier-mediated ferromagnetism above room temperature in ion-implanted (Ga, Mn)P:C. , 2002, Physical review letters.

[67]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[68]  L. Brus Chemical approaches to semiconductor nanocrystals , 1998 .

[69]  E. H. Frei,et al.  Critical Size and Nucleation Field of Ideal Ferromagnetic Particles , 1957 .

[70]  D. K. Young,et al.  Electrical spin injection in a ferromagnetic semiconductor heterostructure , 1999, Nature.

[71]  Gurney,et al.  Nonoscillatory magnetoresistance in Co/Cu/Co layered structures with oscillatory coupling. , 1991, Physical review. B, Condensed matter.

[72]  J. Coey Rare-earth iron permanent magnets , 1996 .

[73]  W. J. Tabor,et al.  Pair-Preference and Site-Preference Models for Rare-Earth Iron Garnets Exhibiting Noncubic Magnetic Anisotropies , 1971 .

[74]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .

[75]  G. Kádár,et al.  Magnetic Structures and Phase Transformations in Mn‐Based CuAu‐I Type Alloys , 1968 .

[76]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[77]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[78]  R. L. Weber,et al.  The Physical Principles of Magnetism , 1967 .

[79]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[80]  Malozemoff Heisenberg-to-Ising crossover in a random-field model with uniaxial anisotropy. , 1988, Physical review. B, Condensed matter.

[81]  X. You,et al.  Inorganic-Organic Hybrid Materials: Synthesis and Structure of a Reduced Ferrous Molybdophosphate, [(C12H8N2)3FeII]2[Fe11MOV12(H2PO4)6(PO4)2(OH)6O24], in the Presence of Fe(II)(1,10-Phenanthroline)3 Complex , 2001 .

[82]  Ivan K. Schuller,et al.  Research frontiers in magnetic materials at soft X-ray synchrotron radiation facilities , 1999 .

[83]  T. Chikyow,et al.  Molecular Beam Epitaxy of Wurtzite GaN-Based Magnetic Alloy Semiconductors , 2001 .

[84]  K. Krishnan,et al.  Magnetic interactions and reversal behaviour of Nd2Fe14B particles diluted in a Nd matrix , 2002 .