Symmetry Matters for Sizes of Extended Formulations

In 1991, Yannakakis [J. Comput. System Sci., 43 (1991), pp. 441--466] proved that no symmetric extended formulation for the matching polytope of the complete graph $K_n$ with $n$ nodes has a number of variables and constraints that is bounded subexponentially in $n$. Here, symmetric means that the formulation remains invariant under all permutations of the nodes of $K_n$. It was also conjectured by Yannakakis that “asymmetry does not help much,” but no corresponding result for general extended formulations has been found so far. In this paper we show that for the polytopes associated with the matchings in $K_n$ with $\lfloor\log n\rfloor$ edges there are nonsymmetric extended formulations of polynomial size, while nevertheless no symmetric extended formulations of polynomial size exist. We furthermore prove similar statements for the polytopes associated with cycles of length $\lfloor\log n\rfloor$. Thus, with respect to the question for smallest possible extended formulations, in general symmetry require...

[1]  Gérard Cornuéjols,et al.  Extended formulations in combinatorial optimization , 2013, Ann. Oper. Res..

[2]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1897 .

[3]  Alfred Bochert Ueber die Zahl der verschiedenen Werthe, die eine Function gegebener Buchstaben durch Vertauschung derselben erlangen kann , 1889 .

[4]  Francesco Maffioli,et al.  An annotated bibliography of combinatorial optimization problems with fixed cardinality constraints , 2006, Discret. Appl. Math..

[5]  R. Kipp Martin,et al.  Using separation algorithms to generate mixed integer model reformulations , 1991, Oper. Res. Lett..

[6]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[7]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[8]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[9]  Mam Riess Jones Color Coding , 1962, Human factors.

[10]  Jeanette P. Schmidt,et al.  The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..

[11]  E. Balas Disjunctive programming and a hierarchy of relaxations for discrete optimization problems , 1985 .

[12]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[13]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[14]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).