Concurrent Inference through Dual Transformation

This paper presents two somewhat independent results and sketches a mechanism that could tie these results together to form an automated theorem proving method. The first point is a correct and complete inference method for first-order logic based on the transformation between conjunctive and disjunctive canonical normal forms. This method, although apparently very inefficient, presents interesting properties, such as not presenting external inference rules. The second point is a concurrent algorithm for dual transformation. This algorithm is presented in a general framework that can be specialized to model several formal systems. Finally, based on the representation adopted to define the algorithm, a dual transformation theorem proving method is sketched.1

[1]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[2]  湯浅 太一,et al.  Common Lisp(パネル討論会) , 1986 .

[3]  Norbert Eisinger What You Always Wanted to Know About Clause Graph Resolution , 1986, CADE.

[4]  Wolfgang Bibel,et al.  Methods and calculi for deduction , 1993 .

[5]  Mark E. Stickel,et al.  An Introduction to Automated Deduction , 1985, Advanced Course: Fundamentals of Artificial Intelligence.

[6]  P. L. Adams THE ORIGINS OF INTELLIGENCE IN CHILDREN , 1976 .

[7]  Leon Sterling,et al.  The Art of Prolog , 1987, IEEE Expert.

[8]  Norbert Eisinger,et al.  Deduction systems based on resolution , 1993 .

[9]  Seif Haridi,et al.  Or-Parallel Prolog on Shared Memory Multiprocessors , 1989, J. Log. Program..

[10]  C. S. Hudson,et al.  The collected papers of C. S. Hudson , 1946 .

[11]  Joe Stoy,et al.  Denotational Semantics , 1977 .

[12]  Rasiah Loganantharaj,et al.  Parallel Theorem Proving with Connection Graphs , 1986, CADE.

[13]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[14]  Wolfgang Bibel,et al.  Automated Theorem Proving , 1987, Artificial Intelligence / Künstliche Intelligenz.

[15]  J. Changeux L'homme neuronal , 1983 .

[16]  Wen-Tsuen Chen,et al.  An efficient procedure for theorem proving in propositional logic on vector computers , 1991, Parallel Comput..

[17]  Pierre Tison Generalization ofConsensus Theory andApplication totheMinimization ofBoolean Functions , 1967 .

[18]  R. Goodstein FIRST-ORDER LOGIC , 1969 .

[19]  A. Kandel Fuzzy Mathematical Techniques With Applications , 1986 .

[20]  Larry Wos,et al.  Logical basis for the automation of reasoning: Case studies , 1994, Handbook of Logic in Artificial Intelligence and Logic Programming.

[21]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[22]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[23]  Elmar Eder Consolution and its Relation with Resolution , 1991, IJCAI.

[24]  Guilherme Bittencourt,et al.  A Multi-Agent Approach to First-Order Logic , 1997, EPIA.

[25]  Francisco J. Varela,et al.  Autonomie et connaissance : essai sur le vivant , 1989 .

[26]  W. Quine On Cores and Prime Implicants of Truth Functions , 1959 .

[27]  Peter B. Andrews Theorem Proving via General Matings , 1981, JACM.

[28]  Guilherme Bittencourt,et al.  In the Quest of the Missing Link , 1997, IJCAI.

[29]  Guilherme Bittencourt,et al.  A Connectionist-Symbolic Cognitive Model , 1993, ISMIS.

[30]  George J. Klir,et al.  Fuzzy sets, uncertainty and information , 1988 .

[31]  Michael J. Quinn,et al.  Designing Efficient Algorithms for Parallel Computers , 1987 .

[32]  Richard C. T. Lee,et al.  A New Algorithm for Generating Prime Implicants , 1970, IEEE Transactions on Computers.

[33]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[34]  Vipin Kumar,et al.  AND-Parallel Execution of Logic Programs on a Shared-Memory Multiprocessor , 1988, J. Log. Program..

[35]  Guy L. Steele,et al.  Common Lisp the Language , 1984 .

[36]  Tony R. Martinez,et al.  Adaptive Parallel Logic Networks , 1988, J. Parallel Distributed Comput..

[37]  Jacques Chassin de Kergommeaux,et al.  An Abstract Machine to Implement OR-AND Parallel Prolog Efficiently , 1990, J. Log. Program..