Investigation of ceria-molten carbonate electrolyte, composite anode and its catalytical effect on various carbon fuels in molten carbonate direct coal/carbon fuel cell

[1]  Qiuye Li,et al.  Space-induced charge carriers separation enhances photocatalytic hydrogen evolution on hollow urchin-like TiO2 nanomaterial , 2020 .

[2]  Changchao Jia,et al.  Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration , 2020, Inorganic Chemistry Frontiers.

[3]  Yang Liu,et al.  Comparative study on the performance of different carbon fuels in a molten carbonate direct carbon fuel cell with a novel anode structure , 2020 .

[4]  Yanwen Ma,et al.  Advanced Current Collectors for Alkali Metal Anodes , 2020, Chemical Research in Chinese Universities.

[5]  P. Lund,et al.  Functional ceria-based nanocomposites for advanced low-temperature (300–600 °C) solid oxide fuel cell: A comprehensive review , 2020 .

[6]  Sanjeev K. Sharma,et al.  A Promising Proton Conducting Electrolyte BaZr1-xHoxO3-δ (0.05 ≤ x ≤ 0.20) Ceramics for Intermediate Temperature Solid Oxide Fuel Cells , 2020, Scientific Reports.

[7]  R. Raza,et al.  The effect of calcination temperature on the properties of Ni-SDC cermet anode , 2020, Ceramics International.

[8]  P. Lund,et al.  Non-doped CeO2-carbonate nanocomposite electrolyte for low temperature solid oxide fuel cells , 2020 .

[9]  Y. Wu,et al.  Proton Shuttles in CeO2/CeO2−δ Core–Shell Structure , 2019, ACS Energy Letters.

[10]  R. Ma,et al.  A review of oxygen reduction mechanisms for metal-free carbon-based electrocatalysts , 2019, npj Computational Materials.

[11]  Yang Liu,et al.  Investigation of the cathode polarization and carbon deposition in a molten carbonate direct carbon fuel cell , 2019, Journal of Applied Electrochemistry.

[12]  Yang Liu,et al.  A surface activation function method to determine the intrinsic reactivity of coal char oxyfuel conversion , 2019, Fuel.

[13]  Shin-Ae Park,et al.  Performance enhancement of molten carbonate-based direct carbon fuel cell (MC-DCFC) via adding mixed ionic-electronic conductors into Ni anode catalyst layer , 2018 .

[14]  Chuanxin He,et al.  Strongly coupled Sm 0.2 Ce 0.8 O 2 -Na 2 CO 3 nanocomposite for low temperature solid oxide fuel cells: One-step synthesis and super interfacial proton conduction , 2018 .

[15]  Yunya Zhang,et al.  A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C , 2018, Advanced materials.

[16]  Cairong Jiang,et al.  Challenges in developing direct carbon fuel cells. , 2017, Chemical Society reviews.

[17]  J. A. Menéndez,et al.  Effect of fuel thermal pretreament on the electrochemical performance of a direct lignite coal fuel cell , 2016 .

[18]  Donggeun Lee,et al.  On-demand supply of slurry fuels to a porous anode of a direct carbon fuel cell: Attempts to increase fuel-anode contact and realize long-term operation , 2016 .

[19]  I. Shakir,et al.  High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC , 2016 .

[20]  M. A. Khan,et al.  Significance enhancement in the conductivity of core shell nanocomposite electrolytes , 2015 .

[21]  S. Donne,et al.  Thermal Investigation of a Doped Alkali-Metal Carbonate Ternary Eutectic for Direct Carbon Fuel Cell Applications , 2015 .

[22]  J. A. Menéndez,et al.  Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup , 2015 .

[23]  J. Yin,et al.  Effect of sulfur and its compounds on the performance of graphite electrooxidation in molten carbonate , 2015 .

[24]  L. Deleebeeck,et al.  Catalytic Enhancement of Carbon Black and Coal-Fueled Hybrid Direct Carbon Fuel Cells , 2015 .

[25]  Cheoreon Moon,et al.  Influence of devolatilized gases composition from raw coal fuel in the lab scale DCFC (direct carbon fuel cell) system , 2014 .

[26]  J. Tulloch,et al.  Influence of selected coal contaminants on graphitic carbon electro-oxidation for application to the direct carbon fuel cell , 2014 .

[27]  J. Yin,et al.  The catalytic effect of CeO2 for electrochemical oxidation of graphite in molten carbonate , 2014 .

[28]  J. Yin,et al.  A novel electrolyte composed of carbonate and CsVO3–MoO3 for electrochemical oxidation of graphite , 2014 .

[29]  Lisa Deleebeeck,et al.  Hybrid direct carbon fuel cells and their reaction mechanisms—a review , 2014, Journal of Solid State Electrochemistry.

[30]  Zhonghua Zhu,et al.  A comparative study of different carbon fuels in an electrolyte-supported hybrid direct carbon fuel cell , 2013 .

[31]  B. Zhu,et al.  Recent development of ceria-based (nano)composite materials for low temperature ceramic fuel cells and electrolyte-free fuel cells , 2013 .

[32]  Yongdan Li,et al.  Electrochemical oxidation of graphite in an intermediate temperature direct carbon fuel cell based on two-phases electrolyte , 2013 .

[33]  J. Yin,et al.  Significant improvement of electrooxidation performance of carbon in molten carbonates by the introduction of transition metal oxides , 2013 .

[34]  Zhongning Shi,et al.  Electrochemical behavior of graphite anode during anode effect in cryolite molten salts , 2012 .

[35]  Justin Ruflin,et al.  Direct carbon fuel cell: A proposed hybrid design to improve commercialization potential , 2012 .

[36]  S. Badwal,et al.  A comprehensive review of direct carbon fuel cell technology. , 2012 .

[37]  Bradley P. Ladewig,et al.  Review of Fuels for Direct Carbon Fuel Cells , 2012 .

[38]  Liangdong Fan,et al.  Low temperature ceramic fuel cells using all nano composite materials , 2012 .

[39]  M. Ikura,et al.  Performance of direct carbon fuel cell , 2011 .

[40]  B. Zhu,et al.  Potential low-temperature application and hybrid-ionic conducting property of ceria-carbonate compos , 2011 .

[41]  M.-B. Song,et al.  Oxidation Behavior of Carbon in a Coin-Type Direct Carbon Fuel Cell , 2011 .

[42]  Juhun Song,et al.  Performance evaluation of tubular fuel cells fuelled by pulverized graphite , 2010 .

[43]  Qinghua Liu,et al.  High efficiency chemical energy conversion system based on a methane catalytic decomposition reaction and two fuel cells: Part I. Process modeling and validation , 2010 .

[44]  Qinghua Liu,et al.  A direct carbon fuel cell with (molten carbonate)/(doped ceria) composite electrolyte , 2010 .

[45]  B. Zhu,et al.  Carbon anode in direct carbon fuel cell , 2010 .

[46]  Shaomin Liu,et al.  Factors That Determine the Performance of Carbon Fuels in the Direct Carbon Fuel Cell , 2008 .

[47]  Gregory A Hackett,et al.  Evaluation of carbon materials for use in a direct carbon fuel cell , 2007 .

[48]  Guiling Wang,et al.  Direct carbon fuel cell: Fundamentals and recent developments , 2007 .

[49]  E. M. Patton,et al.  DIRECT ELECTROCHEMICAL POWER GENERATION FROM CARBON IN FUEL CELLS WITH MOLTEN HYDROXIDE ELECTROLYTE , 2005 .

[50]  K. Hu,et al.  Study of LiFeO2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy , 2004 .

[51]  Alan F. Jankowski,et al.  Direct Conversion of Carbon Fuels in a Molten Carbonate Fuel Cell , 2004 .

[52]  Bin Zhu,et al.  Innovative low temperature SOFCs and advanced materials , 2003 .

[53]  Bin Zhu,et al.  Functional ceria–salt-composite materials for advanced ITSOFC applications , 2003 .

[54]  Anuradha Godavarty,et al.  Catalytic gasification of coal using eutectic salts: reaction kinetics with binary and ternary eutectic catalysts , 2003 .

[55]  S. F. Au,et al.  Electrochemical oxidation of carbon in a 62/38 mol % Li/K carbonate melt , 2000 .

[56]  M. Cassir,et al.  Study of cerium species in molten Li2CO3–Na2CO3 in the conditions used in molten carbonate fuel cells. Part I: Thermodynamic, chemical and surface properties , 2000 .

[57]  E. T. Turkdogan,et al.  Rate of oxidation of graphite in carbon dioxide , 1968 .