Sculpting light by arranging optical components with DNA nanostructures

DNA nanotechnology has developed into a state where the design and assembly of complex nanoscale structures has become fast, reliable, cost-effective, and accessible to non-experts. Nanometer-precise positioning of organic (dyes, biomolecules, etc.) and inorganic (metal nanoparticles, colloidal quantum dots, etc.) components on DNA nanostructures is straightforward and modular. In this perspective article, we identify the opportunities and challenges that DNA-assembled devices and materials are facing for optical antennas, metamaterials, and sensing applications. With the abilities of arranging hybrid materials in defined geometries, plasmonic effects will, for example, amplify molecular recognition transduction so that single-molecule events will be measureable with simple devices. On the larger scale, DNA nanotechnology has the potential of breaking the symmetry of common self-assembled functional materials creating pre-defined optical properties such as refractive index tuning, Bragg reflection and topological insulation.

[1]  Baoquan Ding,et al.  Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. , 2017, ACS nano.

[2]  Pamela E. Constantinou,et al.  From Molecular to Macroscopic via the Rational Design of a Self-Assembled 3D DNA Crystal , 2009, Nature.

[3]  Federico Capasso,et al.  DNA-enabled self-assembly of plasmonic nanoclusters. , 2011, Nano letters.

[4]  Hao Yan,et al.  DNA-directed artificial light-harvesting antenna. , 2011, Journal of the American Chemical Society.

[5]  P. Tinnefeld,et al.  Broadband Fluorescence Enhancement with Self-Assembled Silver Nanoparticle Optical Antennas. , 2017, ACS nano.

[6]  P. Tinnefeld,et al.  Quantum yield and excitation rate of single molecules close to metallic nanostructures , 2014, Nature Communications.

[7]  Stefan A. Maier,et al.  Quantum Plasmonics , 2016, Proceedings of the IEEE.

[8]  Ryan J. Kershner,et al.  Placement and orientation of individual DNA shapes on lithographically patterned surfaces. , 2009, Nature nanotechnology.

[9]  Na Liu,et al.  A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function , 2016, Nature Communications.

[10]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[11]  Philip Tinnefeld,et al.  Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. , 2014, Nano letters.

[12]  W. T. Chen,et al.  Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging , 2016, Science.

[13]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[14]  Jan Renger,et al.  Strong antenna-enhanced fluorescence of a single light-harvesting complex shows photon antibunching , 2014, Nature Communications.

[15]  Mikael Käll,et al.  FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. , 2017, Nanoscale.

[16]  Derek Tseng,et al.  Plasmonics Enhanced Smartphone Fluorescence Microscopy , 2017, Scientific Reports.

[17]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[18]  L. Novotný,et al.  Antennas for light , 2011 .

[19]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[20]  Christos Argyropoulos,et al.  Plasmon-Exciton Coupling Using DNA Templates. , 2016, Nano letters.

[21]  Tim Liedl,et al.  Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. , 2016, ACS nano.

[22]  Qinghua Xu,et al.  Single-Particle Spectroscopic Study on Fluorescence Enhancement by Plasmon Coupled Gold Nanorod Dimers Assembled on DNA Origami. , 2015, The journal of physical chemistry letters.

[23]  A. Polman,et al.  Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand. , 2011, Nano letters.

[24]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[25]  T. Klar,et al.  Biomolecular Recognition Based on Single Gold Nanoparticle Light Scattering , 2003 .

[26]  Christos Argyropoulos,et al.  Ultrafast spontaneous emission source using plasmonic nanoantennas , 2015, Nature Communications.

[27]  Peter Zijlstra,et al.  Single-Molecule Plasmon Sensing: Current Status and Future Prospects , 2017, ACS sensors.

[28]  Tim Liedl,et al.  DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies , 2015, Nano letters.

[29]  David R. Smith,et al.  Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. , 2010, Nano letters.

[30]  N. Seeman,et al.  Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. , 2016, The journal of physical chemistry. B.

[31]  Stefan Diez,et al.  Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. , 2016, ACS nano.

[32]  Philip Mair,et al.  Programming Light-Harvesting Efficiency Using DNA Origami , 2016, Nano letters.

[33]  Nicolas Bonod,et al.  Accelerated single photon emission from dye molecule-driven nanoantennas assembled on DNA , 2012, Nature Communications.

[34]  Jonathan A. Fan,et al.  Ultrasmooth, highly spherical monocrystalline gold particles for precision plasmonics. , 2013, ACS nano.

[35]  Hao Yan,et al.  Fluorescence quenching of quantum dots by gold nanoparticles: a potential long range spectroscopic ruler. , 2014, Nano letters.

[36]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[37]  Brittany L. Cannon,et al.  Excitonic AND Logic Gates on DNA Brick Nanobreadboards , 2015, ACS photonics.

[38]  Z. Jacob,et al.  All-dielectric metamaterials. , 2016, Nature nanotechnology.

[39]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters , 2018 .

[40]  T. LaBean,et al.  Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. , 2013, Nano letters.

[41]  F. Simmel,et al.  Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. , 2016, ACS nano.

[42]  C. Mirkin,et al.  Plasmonic photonic crystals realized through DNA-programmable assembly , 2014, Proceedings of the National Academy of Sciences.

[43]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[44]  G. Haran,et al.  Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit , 2015, Nature Communications.

[45]  Yuri S. Kivshar,et al.  Topological Majorana States in Zigzag Chains of Plasmonic Nanoparticles , 2014 .

[46]  Tim Liedl,et al.  Hot spot-mediated non-dissipative and ultrafast plasmon passage , 2017, Nature Physics.

[47]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[48]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[49]  Elisa A. Hemmig,et al.  Proximity-Induced H-Aggregation of Cyanine Dyes on DNA-Duplexes. , 2016, The journal of physical chemistry. A.

[50]  Na Liu,et al.  Selective control of reconfigurable chiral plasmonic metamolecules , 2017, Science Advances.

[51]  Tao Zhang,et al.  DNA-Based Self-Assembly of Fluorescent Nanodiamonds. , 2015, Journal of the American Chemical Society.

[52]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[53]  Tim Liedl,et al.  Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. , 2012, ACS nano.

[54]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[55]  Philip Tinnefeld,et al.  DNA Origami Nanoantennas with over 5000-fold Fluorescence Enhancement and Single-Molecule Detection at 25 μM. , 2015, Nano letters.

[56]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[57]  P. Rothemund,et al.  Engineering and mapping nanocavity emission via precision placement of DNA origami , 2016, Nature.

[58]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[59]  J. Wenger,et al.  Competition between Förster Resonance Energy Transfer and Donor Photodynamics in Plasmonic Dimer Nanoantennas , 2016 .

[60]  Tao Zhang,et al.  Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. , 2013, Nature nanotechnology.

[61]  Hao Yan,et al.  Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers , 2009, Nanotechnology.

[62]  Philip Tinnefeld,et al.  Single-molecule positioning in zeromode waveguides by DNA origami nanoadapters. , 2014, Nano letters.

[63]  FRET efficiency and antenna effect in multi-color DNA origami-based light harvesting systems , 2017 .

[64]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[65]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[66]  P. Tinnefeld,et al.  Shifting molecular localization by plasmonic coupling in a single-molecule mirage , 2017, Nature Communications.

[67]  Baoquan Ding,et al.  Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. , 2012, Journal of the American Chemical Society.

[68]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[69]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[70]  A. Kuzyk,et al.  Reconfigurable 3D plasmonic metamolecules. , 2014, Nature materials.

[71]  Tao Zhang,et al.  Chiral plasmonic DNA nanostructures with switchable circular dichroism , 2013, Nature Communications.

[72]  S. Bidault,et al.  Selective excitation of single molecules coupled to the bright mode of a plasmonic cavity. , 2014, Nano letters.

[73]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[74]  G. Seelig,et al.  Practical aspects of structural and dynamic DNA nanotechnology , 2017 .

[75]  Lei Liu,et al.  Routing of individual polymers in designed patterns. , 2015, Nature nanotechnology.

[76]  Na Liu,et al.  A plasmonic nanorod that walks on DNA origami , 2015, Nature Communications.

[77]  G. Zheng,et al.  Peak modulation in multicavity-coupled graphene-based waveguide system , 2017, Nanoscale Research Letters.