Nature and coordination geometry of geologically relevant aqueous Uranium(VI) complexes up to 400 ºC: A review and new data.

[1]  D. Guillaumont,et al.  Force Field Parameterization of Actinyl Molecular Cations Using the 12-6-4 Model , 2022, J. Chem. Inf. Model..

[2]  H. Viswanathan,et al.  Uranium carbonate complexes demonstrate drastic decrease in stability at elevated temperatures , 2021, Communications Chemistry.

[3]  B. Grambow,et al.  Second update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium And Technetium, Volume 14 , 2021, Chemical Thermodynamics.

[4]  J. Brugger,et al.  Yttrium Speciation in Sulfate-Rich Hydrothermal Ore-Forming Fluids , 2022, Goldschmidt Abstracts.

[5]  J. Brugger,et al.  The role of sulfur in molybdenum transport in hydrothermal fluids: Insight from in situ synchrotron XAS experiments and molecular dynamics simulations , 2020 .

[6]  J. Brugger,et al.  Yttrium complexation and hydration in chloride-rich hydrothermal fluids: A combined ab initio molecular dynamics and in situ X-ray absorption spectroscopy study , 2020, Geochimica et Cosmochimica Acta.

[7]  Hongwu Xu,et al.  Uranyl speciation in sulfate-bearing hydrothermal solutions up to 250 °C , 2019 .

[8]  J. Yun,et al.  Complexation of UO2(CO3)34- with Mg2+ at varying temperatures and its effect on U(vi) speciation in groundwater and seawater. , 2019, Dalton transactions.

[9]  P. Tremaine,et al.  An Investigation of Uranyl Sulfate Complexation under Hydrothermal Conditions by Quantitative Raman Spectroscopy and Density Functional Theory. , 2019, The journal of physical chemistry. B.

[10]  A. Kerridge,et al.  Ab initio molecular dynamics studies of hydroxide coordination of alkaline earth metals and uranyl. , 2019, Physical chemistry chemical physics : PCCP.

[11]  Arya Das,et al.  Molecular Dynamics Simulation Studies on Structure, Dynamics, and Thermodynamics of Uranyl Nitrate Solution at Various Acid Concentrations. , 2019, The journal of physical chemistry. B.

[12]  Magali Duvail,et al.  UO22+ structure in solvent extraction phases resolved at molecular and supramolecular scales: a combined molecular dynamics, EXAFS and SWAXS approach. , 2019, Physical chemistry chemical physics : PCCP.

[13]  J. Brugger,et al.  The role of Pb(II) complexes in hydrothermal mass transfer: An X-ray absorption spectroscopic study , 2018, Chemical Geology.

[14]  R. Roback,et al.  Response to the comment “Uranyl-chloride speciation and uranium transport in hydrothermal brines: Comment on Migdisov et al. (2018)” by Dargent et al. , 2018, Geochimica et Cosmochimica Acta.

[15]  J. Dubessy,et al.  Uranyl-chloride speciation and uranium transport in hydrothermal brines: Comment on Migdisov et al. (2018) “A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C”, Geochim. Cosmochim. Acta 222, 130–145 , 2018, Geochimica et Cosmochimica Acta.

[16]  R. Roback,et al.  A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C , 2018 .

[17]  Jingwei Zhou,et al.  Effect of Salt on the Uranyl Binding with Carbonate and Calcium Ions in Aqueous Solutions. , 2017, The journal of physical chemistry. B.

[18]  S. Yoo,et al.  Comparison of the Melting Temperatures of Classical and Quantum Water Potential Models , 2017, Front. Phys..

[19]  J. Autschbach,et al.  Uranyl Carbonate Complexes in Aqueous Solution and Their Ligand NMR Chemical Shifts and 17O Quadrupolar Relaxation Studied by ab Initio Molecular Dynamics. , 2017, Inorganic chemistry.

[20]  J. Brugger,et al.  A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? , 2016 .

[21]  Jun Cheng,et al.  Acidity constants and redox potentials of uranyl ions in hydrothermal solutions. , 2016, Physical chemistry chemical physics : PCCP.

[22]  Dmitrii A. Kulik,et al.  Internally consistent thermodynamic data for aqueous species in the system Na-K-Al-Si-O-H-Cl , 2016 .

[23]  J. Brugger,et al.  Speciation and thermodynamic properties of zinc in sulfur-rich hydrothermal fluids: Insights from ab initio molecular dynamics simulations and X-ray absorption spectroscopy , 2016 .

[24]  M. Gillan,et al.  Perspective: How good is DFT for water? , 2016, The Journal of chemical physics.

[25]  Junyeop Lee,et al.  Formation, stability and structural characterization of ternary MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) complexes , 2016 .

[26]  B. Ravel,et al.  Analysis of Soils and Minerals Using X‐ray Absorption Spectroscopy , 2015 .

[27]  Jonny Rutqvist,et al.  Long-term modeling of the thermal–hydraulic–mechanical response of a generic salt repository for heat-generating nuclear waste , 2015 .

[28]  Ernest Hardin,et al.  Summary of Investigations on Technical Feasibility of Direct Disposal of Dual-Purpose Canisters , 2015 .

[29]  R. Ewing,et al.  Long-term storage of spent nuclear fuel. , 2015, Nature materials.

[30]  M. Klein,et al.  Structure, Dynamics, and Spectral Diffusion of Water from First-Principles Molecular Dynamics , 2014 .

[31]  T. Hofer,et al.  Structure and dynamics of the uranyl tricarbonate complex in aqueous solution: insights from quantum mechanical charge field molecular dynamics. , 2014, The journal of physical chemistry. B.

[32]  J. Hazemann,et al.  Speciation and thermodynamic properties of manganese(II) chloride complexes in hydrothermal fluids: In situ XAS study , 2014 .

[33]  A. Roßberg,et al.  Uranium(VI) chemistry in strong alkaline solution: speciation and oxygen exchange mechanism. , 2014, Inorganic chemistry.

[34]  A. Williams-Jones,et al.  The Chemistry of Metal Transport and Deposition by Ore-Forming Hydrothermal Fluids , 2014 .

[35]  J. Dubessy,et al.  Experimental study of uranyl(VI) chloride complex formation in acidic LiCl aqueous solutions under hydrothermal conditions (T = 21 C?350 °C, Psat) using Raman spectroscopy , 2013 .

[36]  S. Tsushima,et al.  Structural characterization of the aqueous dimeric uranium(VI) species: (UO2)2CO3(OH)3-. , 2013, Dalton transactions.

[37]  H R Greenberg,et al.  Scoping Thermal Analysis of Alternative Dual-Purpose Canister Disposal Concepts , 2013 .

[38]  Jun-Yeop Lee,et al.  Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. , 2013, Dalton transactions.

[39]  M. Dušek,et al.  Actinides in Geology, Energy, and the Environment. Revision of the symmetry and the crystal structure of čejkaite, Na4(UO2)(CO3)3 , 2013 .

[40]  Jun Cheng,et al.  Hydration, acidity and metal complexing of polysulfide species: a first principles molecular dynamics study , 2013 .

[41]  L. Soderholm,et al.  Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. , 2013, Chemical reviews.

[42]  Yuan Tian,et al.  Speciation of nickel (II) chloride complexes in hydrothermal fluids: In situ XAS study , 2012 .

[43]  A. Roßberg,et al.  Binary and ternary surface complexes of U(VI) on the gibbsite/water interface studied by vibrational and EXAFS spectroscopy , 2012 .

[44]  G. Aquilanti,et al.  Monitoring synchrotron X-ray-induced radiolysis effects on metal (Fe, W) ions in high-temperature aqueous fluids. , 2012, Journal of synchrotron radiation.

[45]  Thomas Wagner,et al.  GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes , 2012, Computational Geosciences.

[46]  V. Metz,et al.  Radionuclide behaviour in the near-field of a geological repository for spent nuclear fuel , 2012 .

[47]  Ivano Tavernelli,et al.  Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics-Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections. , 2012, Journal of chemical theory and computation.

[48]  E. Bylaska,et al.  Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations. , 2012, Inorganic chemistry.

[49]  Zhang Yong-fan,et al.  Electronic Structures of Uranyl(VI) Carbonate Complexes in the Aqueous Phase , 2012 .

[50]  M. Bühl,et al.  Insights into uranyl chemistry from molecular dynamics simulations. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  S. Salvi,et al.  An experimental study of the solubility of baddeleyite (ZrO2) in fluoride-bearing solutions at elevated temperature , 2011 .

[52]  I. Císařová,et al.  Agricolaite, a new mineral of uranium from Jáchymov, Czech Republic , 2011 .

[53]  S. Skanthakumar,et al.  Structural correspondence between uranyl chloride complexes in solution and their stability constants. , 2011, The journal of physical chemistry. A.

[54]  J. Hazemann,et al.  Speciation and thermodynamic properties for cobalt chloride complexes in hydrothermal fluids at 35-440 degrees C and 600 bar: An in-situ XAS study , 2011 .

[55]  B. Humbert,et al.  Hydrolysis of uranyl(VI) in acidic and basic aqueous solutions using a noncomplexing organic base: a multivariate spectroscopic and statistical study. , 2011, Inorganic chemistry.

[56]  L. Rao Bridging the Gap in the Chemical Thermodynamic Database for Nuclear Waste Repository: Studies of the Effect of Temperature on Actinide Complexation , 2011 .

[57]  S. Kerisit,et al.  Molecular Simulation of the Diffusion of Uranyl Carbonate Species in Aqueous Solution , 2010 .

[58]  N. Rösch,et al.  Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution. , 2010, Dalton transactions.

[59]  D. Sherman Metal complexation and ion association in hydrothermal fluids: insights from quantum chemistry and molecular dynamics , 2010 .

[60]  M. Apted,et al.  The Thermal-Hydrological Impact on Increased Spent-Fuel Storage Capacity in Yucca Mountain Repository , 2010 .

[61]  G. Schreckenbach,et al.  Oxygen exchange in uranyl hydroxide via two "nonclassical" ions. , 2010, Inorganic chemistry.

[62]  E. Bastrakov,et al.  Solubility of uranium in hydrothermal fluids at 25 ° to 300 ° C , 2010 .

[63]  J. Hazemann,et al.  High-temperature and Pressure Spectroscopic Cell for In-situ XAS Study of Supercritical Fluids at the Australian Synchrotron , 2010 .

[64]  C. Hennig,et al.  Neptunium carbonato complexes in aqueous solution: an electrochemical, spectroscopic, and quantum chemical study. , 2009, Inorganic chemistry.

[65]  G. Schreckenbach,et al.  Effect of counterions on the structure and stability of aqueous uranyl(VI) complexes. A first-principles molecular dynamics study. , 2009, Inorganic chemistry.

[66]  K. Balasubramanian,et al.  Theoretical studies of UO(2)(OH)(H(2)O)(n) (+), UO(2)(OH)(2)(H(2)O)(n), NpO(2)(OH)(H(2)O)(n), and PuO(2)(OH)(H(2)O)(n) (+) (n, 2009, The Journal of chemical physics.

[67]  M. Vincent,et al.  The geometric structures, vibrational frequencies and redox properties of the actinyl coordination complexes ([AnO2(L)n](m); An = U, Pu, Np; L = H2O, Cl-, CO3(2-), CH3CO2(-), OH-) in aqueous solution, studied by density functional theory methods. , 2009, Dalton transactions.

[68]  C. Hennig,et al.  Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. , 2009, Inorganic chemistry.

[69]  J. Hazemann,et al.  In-situ X-ray absorption study of Iron(II) speciation in brines up to supercritical conditions , 2009 .

[70]  G. Schreckenbach,et al.  Theoretical study of the oxygen exchange in uranyl hydroxide. An old riddle solved? , 2008, Journal of the American Chemical Society.

[71]  Eric J Bylaska,et al.  Equatorial and apical solvent shells of the UO2 2+ ion. , 2008, The Journal of chemical physics.

[72]  M. Bühl,et al.  Density functional theory study of uranium(VI) aquo chloro complexes in aqueous solution. , 2008, The journal of physical chemistry. A.

[73]  S. Brooks,et al.  Formation of aqueous MgUO2(CO3)3(2-) complex and uranium anion exchange mechanism onto an exchange resin. , 2008, Environmental science & technology.

[74]  K. Balasubramanian,et al.  Computational modeling of environmental plutonyl mono-, di- and tricarbonate complexes with Ca counterions: Structures and spectra: Puo2(CO3)22-, PuO2(CO3)2Ca, and PuO2(CO3)3Ca3 , 2008 .

[75]  Michel Cuney,et al.  The extreme diversity of uranium deposits , 2008 .

[76]  C. Hennig,et al.  The relationship of monodentate and bidentate coordinated uranium(VI) sulfate in aqueous solution , 2008 .

[77]  K. Balasubramanian,et al.  Theoretical studies on structures of neptunyl carbonates: NpO2(CO3)m(H2O)n(q-) (m = 1-3, n = 0-3) in aqueous solution. , 2007, Inorganic chemistry.

[78]  A. Roßberg,et al.  Stoichiometry and structure of uranylVI hydroxo dimer and trimer complexes in aqueous solution. , 2007, Inorganic chemistry.

[79]  T. Driesner The system H2O–NaCl. Part II: Correlations for molar volume, enthalpy, and isobaric heat capacity from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl , 2007 .

[80]  T. Driesner,et al.  The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl , 2007 .

[81]  I. Grenthe,et al.  On the structure and relative stability of uranyl(VI) sulfate complexes in solution , 2007 .

[82]  C. Hennig,et al.  EXAFS investigation of U(VI), U(IV), and Th(IV) sulfato complexes in aqueous solution. , 2007, Inorganic chemistry.

[83]  C. Hennig,et al.  Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution. , 2007, Inorganic chemistry.

[84]  B. Ravel,et al.  EXAFS Energy Shift and Structural Parameters , 2007 .

[85]  S. Brooks,et al.  X-ray absorption spectroscopy identifies calcium-uranyl-carbonate complexes at environmental concentrations☆ , 2007 .

[86]  S. Brooks,et al.  Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. , 2006, Environmental science & technology.

[87]  D. Dixon,et al.  Predicting the energy of the water exchange reaction and free energy of solvation for the uranyl ion in aqueous solution. , 2006, The journal of physical chemistry. A.

[88]  L. J. L. Häller,et al.  Density functional theory investigation of the geometric and electronic structures of [UO2(H2O)m(OH)n](2 - n) (n + m = 5). , 2006, Dalton transactions.

[89]  T. Windus,et al.  Complexation of the carbonate, nitrate, and acetate anions with the uranyl dication: density functional studies with relativistic effective core potentials. , 2005, The journal of physical chemistry. A.

[90]  C. Hennig,et al.  First structural characterization of a protactinium(V) single oxo bond in aqueous media. , 2005, Inorganic chemistry.

[91]  M. Bühl,et al.  Coordination environment of aqueous uranyl(VI) ion. , 2005, Journal of the American Chemical Society.

[92]  C. Hennig,et al.  Comparative EXAFS investigation of uranium(VI) and -(IV) aquo chloro complexes in solution using a newly developed spectroelectrochemical cell. , 2005, Inorganic chemistry.

[93]  S. Skanthakumar,et al.  Determination of actinide speciation in solution using high-energy X-ray scattering , 2005, Analytical and bioanalytical chemistry.

[94]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[95]  J. Mosselmans,et al.  Uranyl-citrate speciation in acidic aqueous solutions—an XAS study between 25 and 200 °C , 2005 .

[96]  P. Hay,et al.  Theoretical investigations of uranyl-ligand bonding: four- and five-coordinate uranyl cyanide, isocyanide, carbonyl, and hydroxide complexes. , 2005, Inorganic chemistry.

[97]  Jari Löfman Simulation of Hydraulic Disturbances Caused by the Decay Heat of the Repository in Olkiluoto , 2005 .

[98]  A. Kirishima,et al.  Speciation study on uranium(VI) hydrolysis at high temperatures and pressures , 2004 .

[99]  E. Bailey,et al.  Uranyl acetate speciation in aqueous solutions—an XAS study between 25°C and 250°C , 2004 .

[100]  Xueyuan Chen,et al.  Hydrolysis of Uranium(VI) at Variable Temperatures (10-85 °C) , 2004 .

[101]  S. Skanthakumar,et al.  Experimental coordination environment of uranyl(VI) in aqueous solution , 2004 .

[102]  S. Skanthakumar,et al.  Structure of the UO2 2+-SO 4 2- ion pair in aqueous solution. , 2004, Inorganic chemistry.

[103]  F. J. Pearson,et al.  Development and application of the Nagra/PSI Chemical Thermodynamic Data Base 01/01 , 2002, Geological Society, London, Special Publications.

[104]  A. Fischer Competitive coordination of the uranyl ion by perchlorate and water - The crystal structures of UO2(ClO4)(2)center dot 3 H2O and UO2(ClO4)(2)center dot 5 H2O and a redetermination of UO2(ClO4)(2)center dot 7 H2O , 2003 .

[105]  D. Majumdar,et al.  Theoretical study of aqueous uranyl carbonate (UO2CO3) and its hydrated complexes: UO2CO3·nH2O (n=1–3) , 2003 .

[106]  T A Buscheck,et al.  Validation of the multiscale thermohydrologic model used for analysis of a proposed repository at Yucca Mountain. , 2003, Journal of contaminant hydrology.

[107]  Yu-Shu Wu,et al.  Modeling thermal-hydrological response of the unsaturated zone at Yucca Mountain, Nevada, to thermal load at a potential repository. , 2003, Journal of contaminant hydrology.

[108]  R. Guillaumont,et al.  Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium , 2003 .

[109]  B. Scott,et al.  Aqueous reactions of U(VI) at high chloride concentrations: syntheses and structures of new uranyl chloride polymers. , 2002, Inorganic chemistry.

[110]  T. Ozaki,et al.  Uranium(VI) Speciation at Elevated Temperatures and Pressures by Time-resolved Laser-induced Fluorescence Spectroscopy , 2002 .

[111]  P. Burns,et al.  A uranyl sulfate cluster in Na10[(UO2)(SO4)4](SO4)2.3H2O. , 2002, Acta crystallographica. Section C, Crystal structure communications.

[112]  T. Reich,et al.  A theoretical study on the structures of UO2(CO3)34−, Ca2UO2(CO3)30, and Ba2UO2(CO3)30 , 2002 .

[113]  B. Roos,et al.  Coordination of the neptunyl ion with carbonate ions and water: a theoretical study. , 2002, Inorganic chemistry.

[114]  I. Billard,et al.  Do perchlorate and triflate anions bind to the uranyl cation in an acidic aqueous medium? A combined EXAFS and quantum mechanical investigation. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[115]  L. Gagliardi,et al.  A theoretical study of the structure of tricarbonatodioxouranate. , 2001, Inorganic chemistry.

[116]  B. Schimmelpfennig,et al.  Solvent effects on uranium(VI) fluoride and hydroxide complexes studied by EXAFS and quantum chemistry. , 2001, Inorganic chemistry.

[117]  J. Mosselmans,et al.  A study of uranium speciation in acetate solutions at temperatures from 25 to 250 degrees C. , 2001, Journal of synchrotron radiation.

[118]  G. Bernhard,et al.  Uranyl(VI) carbonate complex formation: Validation of the Ca2UO2(CO3)3(aq.) species , 2001 .

[119]  C. Hennig,et al.  Solution coordination chemistry of uranium in the binary UO22+-SO42- and the ternary UO22+-SO42--OH- system , 2000 .

[120]  G. Bidoglio,et al.  Time-Resolved Laser-Induced Fluorescence of Uranium(VI) Hydroxo-Complexes at Different Temperatures , 2000 .

[121]  T. Reich,et al.  The hydrolysis of dioxouranium(VI) investigated using EXAFS and 17O-NMR , 2000 .

[122]  B. Schimmelpfennig,et al.  Structure of Uranium(VI) in Strong Alkaline Solutions. A Combined Theoretical and Experimental Investigation , 1999 .

[123]  R. Ewing,et al.  REFINEMENT OF THE CRYSTAL STRUCTURE OF RUTHERFORDINE , 1999 .

[124]  J. Rehr,et al.  XAFS Debye-Waller factors in aqueous Cr+3 from molecular dynamics. , 1999, Journal of synchrotron radiation.

[125]  S. Conradson,et al.  Chemical Speciation of the Uranyl Ion under Highly Alkaline Conditions. Synthesis, Structures, and Oxo Ligand Exchange Dynamics , 1999 .

[126]  F. Livens,et al.  X-ray Absorption Spectroscopy of Tricarbonatodioxouranate(V), [UO(2)(CO(3))(3)](5)(-), in Aqueous Solution. , 1999, Inorganic chemistry.

[127]  Richard L. Martin,et al.  Density functional calculations on actinide compounds: Survey of recent progress and application to [UO2X4]2− (X=F, Cl, OH) and AnF6 (An=U, Np, Pu) , 1999 .

[128]  Akira Kitamura,et al.  Solubility of U(YI) in Highly Basic Solutions , 1998 .

[129]  D. Shuh,et al.  Investigation of Aquo and Chloro Complexes of UO(2)(2+), NpO(2)(+), Np(4+), and Pu(3+) by X-ray Absorption Fine Structure Spectroscopy. , 1997, Inorganic chemistry.

[130]  Everett L. Shock,et al.  Uranium in geologic fluids: Estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures , 1997 .

[131]  A. Zotov,et al.  Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl° (aq) , 1997 .

[132]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[133]  E. Shock,et al.  Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes. , 1997, Geochimica et cosmochimica acta.

[134]  G. Wipff,et al.  Force field representation of the UO22+ cation from free energy MD simulations in water. Tests on its 18-crown-6 and NO3− adducts, and on its calix[6]arene6− and CMPO complexes , 1996 .

[135]  C. Heinrich,et al.  Chemical mass transfer modelling of ore-forming hydrothermal systems: current practise and problems , 1996 .

[136]  A. Ekberg,et al.  EXAFS studies of pentavalent neptunium carbonato complexes. Structural elucidation of the principal constituents of neptunium in groundwater environments , 1996 .

[137]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[138]  N. Blaton,et al.  The structure and physicochemical characteristics of synthetic zippeite , 1995 .

[139]  W. Lukens,et al.  MULTINUCLEAR NMR, RAMAN, EXAFS, AND X-RAY-DIFFRACTION STUDIES OF URANYL CARBONATE COMPLEXES IN NEAR-NEUTRAL AQUEOUS-SOLUTION - X-RAY STRUCTURE OF C(NH2)(3) (6) (UO2)(3)(CO3)(6) CENTER-DOT-6.5H(2)O , 1995 .

[140]  Ankudinov,et al.  Multiple-scattering calculations of x-ray-absorption spectra. , 1995, Physical review. B, Condensed matter.

[141]  M. Vincent,et al.  AB INITIO QUANTUM CHEMICAL CALCULATIONS ON URANYL UO22+, PLUTONYL PUO22+, AND THEIR NITRATES AND SULFATES , 1995 .

[142]  Bruce Ravel,et al.  The UWXAFS analysis package : philosophy and details , 1995 .

[143]  D. L. Clark,et al.  Actinide Carbonte Complexes and Their Importance in Actinide Environmental Chemistry , 1995 .

[144]  I. Grenthe,et al.  The temperature dependence of stability constants for the formation of polynuclear cationic complexes , 1994 .

[145]  C. Nguyen-trung,et al.  Aqueous uranium complexes. 2. Raman spectroscopic study of the complex formation of the dioxouranium(VI) ion with a variety of inorganic and organic ligands , 1992 .

[146]  János Mink,et al.  Vibrational spectroscopic studies of uranyl complexes in aqueous and non-aqueous solutions , 1992 .

[147]  E. Oelkers,et al.  SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000 ° C , 1992 .

[148]  E. Oelkers,et al.  Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions , 1991 .

[149]  E. Oelkers,et al.  Triple-ion anions and polynuclear complexing in supercritical electrolyte solutions , 1990 .

[150]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[151]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[152]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[153]  I. Grenthe,et al.  Structure of the hydrated dioxouranium(VI) ion in aqueous solution. An x-ray diffraction and proton NMR study , 1983 .

[154]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[155]  J. C. Taylor,et al.  The hydrogen‐atom locations in the α and β forms of uranyl hydroxide , 1971 .

[156]  R. Ondrejcin THERMAL DENITRATION OF URANYL NITRATE HEXAHYDRATE , 1966 .

[157]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .